\ \-/‘f;\ ™
2>~ New Eagle
,,_LDM g

~_ MOTOHAWK ™ = .
' RESOUR

I > Ne

w Eagle

<
\\MECHATRONIC CONTROL SOLUTIONS

TRAINING SUPPLEMENT

Agenda

Software Requirements

Training Project System Overview
Training Project Block Diagram
Controller I/0 Acronyms

Controller Hardware Layout

CONTACT INFORMATION

Let us know how we can help!

To contact us by telephone, please call 877.234.1410

To request a quote, please contact quotes@neweagle.net
For New Eagle orders, please contact orders@neweagle.net

Vardec Parameters
Calibration Management
Analog Input

PWM Output

Fault Management

0 o g b~ W DN

Product and tools support
http://www.neweagle.net/support/wiki/
support@neweagle.net

12
14
15
16

Mot oHgu K

Basic MotoHawk Training Agenda

DAY 3

DAY 1 DAY 2
Introduction Fault management
Software installation Throttle project: Faults
. Basics of MATLAB/Simulink & MotoHawk Throttle project: PID control
MOI’I‘III’Ig Simple Simulink model

First build, kit setup, and flash
Basics of MotoTune

Triggers Data storage
1/0 Throttle project: Data storage
Calibrations, probes, & overrides CAN

Afternoon Throttle project: 1/0

Throttle project: CAN
Libraries
Components

New Eagle hardware & software offerings
Questions

Evaluation

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Training Supplement - Page 2

Software Requirements

Welcome to MotoHawk training! Presented by New Eagle, this The following software will be installed DURING training.
three day course will train you to create a real-world application
with Simulink and MotoHawk, program a module, and calibrate Mgfg/—/gwk
in real-time using MotoTune. But first things first, let's make sure
you have the correct software on your laptop. MotoHawk
The training requires several software installations involving a MATLAB MotoHawk Version
somewhat complex compatibility maze. The following lists the Version 083 20082 2008b 20092 2009b 20108 2010hL
software requirements and any relevant compatibility notes. B51 Y Y ¥ N N N N
Please install software in the order listed PRIOR to training. wl ’ Y v N " 8 !
7.01 ¥ Y ¥ M M M M
704 Y] ¥ N N M N
Windows 7.1 Y Y Y N N N N
If Windows installation is 64bit, MotoHawk 2010aSPO or later is required 7.2 (R200&3) Y ¥ ¥ N M M M
7.3 (R2006h) Y ¥ Y N N M N
‘\ MathWorks 7.4 (R20073) Y Y Y Y N N N
7.5 (R2007b) ¥ ¥ Y Y i ¥ N
Required installations™ 7.6 (R20083) N Y A Y ¥ ¥ N
7.7 (R2008k N ¥ Y ¥ ¥ ¥ Y
- MATLAB** () A)
- Simulink 7.8 (R20093) N M ¥ ¥ Y Y Y (A)
- Real Time Workshop 7.9 (R2009b) N N N ¥ Y ¥ Y (A)
- Real Time Workshop Embedded Coder 7.9.1 (R20096SP1) N N N N Y(B Y Y(B)
- Stateflow (optional, but highly recommended)
- Stateflow Coder (optional, but highly recommended) FAl (R0 N " " N Y| X Y&
7.11 (R2010k) N N N M N Y (B} Y(B)

*Required before training (MathWorks distributes trial downloads and licenses) A~ in cument beta release, B — planned in fulure beta or senvice pack

**If MATLAB installation is 64bit, MotoHawk 2010bSPO or later is required

) :) , . MotoServer/MotoTune*
WnT(th_i rﬂitalll\ztlfn: abl?¥e closmetlete, you're system is prepared to “With MotoHawk 2010aBeta6 and later, MotoServer/MotoTune 8.13.7.120 or later is required
WOrK wi € iotornawk 1ool surte. *With MotoHawk 2009bBetal and later, MotoServer/MotoTune 8.13.7.87 or later is required
The necessary software for the MotoHawk tools and a temporary
license will be provided at training. % GCC (compiler)*
*MotoHawk 2009bBeta? or later is required
FVASER CANKing

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net MotoHawk Training Supplement - Page 3

Training Project System Overview

Accelerator Pedal

Throttle Position Sensor

/Y7 ot ot e K

@—)[Controller]—)[Actuators
Fault Management
and Diagnostics

Electronic Throttle Body

Fuel Injector

Phone: 877.234.1410 support@eneweagle.net

www.neweagle.net

MotoHawk Training Supplement - Page 4

ect Block Diagram

FROM
BATTERY +
W56, RED W59, RED
[Wel.RED
W57, BLK
NORMAL W60, RED
5A FUSE
B-22 A16 T0
i “ GCM-0563-048-0801 = ' weseor —
KEY BOOT B-08 A24
Swinen @:‘E A S ooaE W32, BRN-WHT ——B08 | gcyp DRVGB |A24 w24, BLK-WHT
BUTTON E ‘ W47, BLK-YEL B2 | stop GCM'05 63-048-0802 prvec BT w41, BLK-GRN
r
— ol o5 |6 W64, RED
0 8 o| 2 |
COMPUTER é oG -
5 B-20 A-04
g Wad, WHT CAN1+ HSO1 W04, WHT ——
z [
Al = Jc Was, BLU B21 | caNt- Hsoz [A18 W18, PNK-BRN ——
BOOT KEY =
A B D TERMINATION 507
() E J [z | RESISTOR W31, YEL CAN2+
K
! W30, BRN B06 | canz-
—— W38, ORG B-14 | cana+
—— Wa7,GRN B13 | cana-
W48, PPL-YEL B-24 | ypre
—— w25 BLk-0RG —— B0 | xpRg DRVPA [A20 20, ORG-WHT MAINPOVER
DRVPB |-A21 w21, BLK-BLU :—W
MPRD [A2 W22, YEL-PPL
B-05
—— W29, RED-PNK DG1M (10KPU), VR1+ or DG1M (51K1PD) WERED
W28, DKBLU-PNK ——B04 | AN{7M (220KPD), VR1-
B-16 A02 AT
—— W40, GRN-RED ——B18_{ pGam (10KPU), VR2+ or DG2M (51K1PD) Lsot 292 wo2 PNK-ORG INJECTOR
W39, GRN-YEL B-15 | AN18M or DG8M (3KPD), VR2- Lsoz A8 W13, WHT-LTBLU ——
Lso3 [A07 W07, YEL-ORG ——
Lso4 [A08 W08, LTBLU ——
—— W26, TAN B-02 | AN1M (220KPD, 100PU) Lsos A4 W14, WHT-BLK ——
—— W27, YEL B-03 | AN2M (220KPD, 100PU) Connected to B-23, LS06 295 w05, WHT-DKBLU ——
—— W34, ORG-BLK B-10 | AN3M (220KPD, 1KPU) Lso7 A28 W23, RED-BLK ——
—— W35, BLU-BLK B11 | ANaM (220KPD, 1KPU)
—— W10, GRY A10_| ANSM (220KPD, 51K1PD)
—— W11, DKBLU A1 | ANBM (220KPD, 51K1PD)
APP —— W09, TAN-LTBLU A09 | AN7M (220KPD, 51K1PD)
< W12, DKBLU-WHT ——A12_| ANgM (220KPD)
W33, GRY-RED B-09 | AN9M (220KPD)
TPS —— W36, WHT-ORG B12 | AN10M (220KPD)
< —— W42, PPL B-18 | AN11M or DG3M (220KPD, 1KPU) Hi+ FA0CT wot, PNK-LTBLU _—
—— W43, TAN-PPL B-19 | AN12M or DG4M (220KPD, 1KPU) Hi- AT W17, PNK-PPL MOTOR
—— W15, BLK-YEL A5 | AN13M or DG5M (3KPD)
— W06, BLK-RED A08 | AN14M or DG6M (3KPD)
—— W03, YEL-BLK & AN15M (220KPD, 1KPU)
—— W19, 0RG A9 | AN16M or DG7M (3KPD)

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net MotoHawk Training Supplement - Page 5

Controller 1/0 Acronyms

GCM-0563-048-0801
GCM-0563-048-0802

...Literally Means : Other Notations : General Notes :

ECUP

STOP

DRVPx

DRVGx
XDRPx
XDRGx
ANxM

DGxM
VRx+, VRx-

MPRD
LSOx
HSOx
Hx+, Hx-,

CANx+, CANXx-

BATTery

ECU Power

Emergency STOP

DRiVer Power

DRiVer Ground
TRANSDuceR Power
TRANSDuceR Ground

ANalog sensor input Monitor

DiGital sensor input Monitor

Variable Reluctance sensor input

Main Power Relay Driver
Low-Side driver Output
High-Side Output
H-Bridge output

Controller Area Network communication

KEYSW, WAKE

ESTOP

DRVPWRx

GNDx, PWRGRNDx
XDRPWRx
XDRGNDx

ANx

DGx

LSDx
HSDx

HBxA, HBxB, ETCx,
HBRIDGExA, HBRIDGEXB

~180mA at 13.8V (module only, no external loads); connected directly
to battery+; low-current power to analog/digital core of module; allows
controlled shutdown

~bmA at 13.8V; derived (through switch) from battery+; "wake-up”
signal to module to initiate execution of software algorithm (when power
removed, operations continue until software commands a shutdown)

when asserted, disables the main power relay through hardware (on
other modules, may disable engine-related outputs such as EST and
FUELP); input for boot mode signal

through MPR, provides battery+ to actuators; internally provides power to
H-bridges (allows controlled shutdown on modules without BATT)

connected directly to battery-
300mA maximum; 5V reference for sensors
internal connection to DRVG; low reference for sensors

has a pull-up and/or pull-down internal resistor; time constant through
an internal capacitor and additional internal resistor

same as analog sensor input monitor, but may also resolve frequency

typically used to resolve frequency (on other modules, used to resolve
engine crankshaft position)

controls the main power relay
connection to DRVG through transistor; PWM capable
connection to DRVP through power switch; PWM capable

on some modules, can also be operated independently as low-side or
high-side driver outputs

CAN 2.0B protocol

Phone: 877.234.1410

supporteneweagle.net

www.neweagle.net

MotoHawk Training Supplement -

Page 6

Controller 1/O Acronyms (o

Common Acronyms
Found On Other Modules:

...Literally Means : Other Notations : General Notes :

GNDREF
CNK+, CNK-

CAM+, CAM-

SPDx, SPD-

EKxP, EKxN
EGOxP, EGOxN

HEGOx

LSUxUN, LSUxIA, LSUxIP,
LSUxVM

INJx
ESTx

EST RTN

FUELPR

BATT_OUT
TACH_LINK

SCL+, SCL-
IS09141K, 1S09141L

GrouND REFerence

CraNKshaft encoder sensor input

CAMshaft encoder sensor input

SPeeD (frequency) sensor input

Engine Knock sensor input

Exhaust Gas Oxygen sensor input

Heated Exhaust Gas Oxygen sensor input

Lambda Sensing Unit sensor input

fuel INJector driver output

Electronic Spark Timing output

EST ReTurN

FUEL Pump Relay

BATTery OUT

TACHometer output or LINK interface
Serial Communication Link

1S09141 communication link

CNKVR+, CNKVR-,
CNKDG

CAMDG

SPEEDx

KNKx+, KNKx-

02x+, 02x-

FINJx, Flx

FUELP

RS-485A, RS-4858B

ground reference signal

typically used to resolve engine crankshaft position (with variable

reluctance and/or digital sensor inputs)

typically used to resolve engine camshaft position (with variable

reluctance and/or digital sensor inputs)

typically used to resolve frequency (with variable reluctance and/or

digital sensor inputs)

used with wide-range piezoelectric knock sensors

dual differential amplifier targeted at lambda oxygen sensor signal

processing

used with switching type oxygen sensor (heated or unheated)

used with the Bosch CJ125 exhaust gas oxygen sensor

low-side output to drive high-impedance fuel injector

wn nn

5V signal to drive logic level (“”smart

) ignition coil;

on some modules, may be used as additional analog inputs

reference level for logic level (“smart”) ignition coils

low-side output to drive fuel pump relay
supply voltage for external input devices
tachometer output or LINK serial interface
RS485 serial communication link

ISO9141 communication link

Phone: 877.234.1410

supporteneweagle.net

www.neweagle.net

MotoHawk Training Supplement - Page 7

ECU Module
1 L
{ CPU
]
TPL a
[u
M MIOS T
] p
u AD | | —r— U
s Converter CAN Serial T
5 5
RAM Flash
32k 512k
T v
' 1
' 1
] L]
' 1
pess=s desstensst
[
[
[
[]
. ! ~ " 1
Sarial EEPROM Extermal Parallel EEPROM
ak RAM / 2k

Component Descriptions

Inputs

A/D Converter

MIOS

TPU

CAN

Serial

RAM

Flash

Serial EEPROM

External RAM

Parallel
EEPROM

Outputs

Analog, discrete,
frequency, crank/cam and
corresponding resource
circuitry

For analog inputs, converts
voltage into ADC’s

Modular Input/Output
System, asychronous (non-
angle-based) operations only

Time Processing Unit,
synchronous (angle-based) or
asynchronous operations

Controller Area Network
communication

RS485 serial communication
(RS232 on some modules)

Random Access Memory,
volatile variable, stack, and
heap storage

Constant data and
executable code

Electrically-Erasable
Programmable Read-Only
Memory; nonvolatile variable
storage

Select modules only; same
as RAM above (but slower)

constant variable storage,
calibration in development
units only

Circuitry to drive the following
outputs: discrete, PWM,
engine-specific (fuel injector,
EST), H-bridge, low-side
output, high-side output

Controller Hardware Layout

Phone: 877.234.1410

support@eneweagle.net

www.neweagle.net

MotoHawk Training Supplement - Page 8

Vardec Parameters

Vardec — a global variable declaration.
Vardecs are unique by name and are created by numerous MotoHawk
blocks, such as calibrations, probes, look-up tables, and data definitions.

Below are common mask parameters found with MotoHawk vardec blocks.

Note that not all of the mask parameters below are available for each vardec.

Name — The name of the vardec.
Must be unique among all other vardecs in a MotoHawk model.

Initial Value — The initial value of the variable. The dimensions of the
initial value set the size of the variable. For instance, if the initial value is
set as zeros(5), the variable is a 5x5 matrix. If the initial value is set as [0
1 2 3], the variable is a vector of length 4. Or, if the initial value is set as
Y%, the variable is a scalar.

B Behavior | Deseription

Calibration On a development module, stored in parallel EEPROM.
On a production module, stored as a constant in flash (can only be
changed through reflash).
Viewed as calibration in MotoTune.

Display Stored in RAM.

Behavior — The display and storage behavior of the variable.

Viewed as display variable in MotoTune.

Storage Class — The storage class of the variable.

Output Data Reference — Option to output a reference signal pointing
to the variable. For instance, this outport signal could be connected to a
MotoHawk Data Read block to expose that variable for use downstream in
the application.

MotoTune Window — Option to set the variable as a calibration (i.e.,
appear in a .cal file) or a display (i.e., appear in a .dis file).

Name Source — Option to define the vardec name by the Parameter
(using Name mask parameter above) or Output Wire Name (using the
name of the output wire).

Data Source — Option on how to define the data source. Lookup By
Name uses the Data Name mask parameter, Input Reference Signal
provides a reference inport, Lookup By Name In Structure uses the Data
Name mask parameter in conjunction with the name of the structure, and
Lookup By Name In Structure Via Reference uses a reference inport in
conjunction with the name of the structure.

Data Structure — The dimensional structure of the variable.

If Vector or Matrix is selected, additional options are provided to Read/
write scalar from location by index (zero-based) or Read entire data
structure at once; if the latter is selected, the dimensions of the vector/
matrix must be explicitly specified.

Calibration NV Stored in serial EEPROM (shadowed in RAM).
Viewed as calibration in MotoTune.
Display NV Stored in serial EEPROM (shadowed in RAM).

Viewed as display variable in MotoTune.

Storage Class

Constant On a development module, stored in parallel EEPROM.
On a production module, stored as a constant in flash (only can be
changed through reflash).

Volatile Stored in RAM.
NonVolatile Stored in serial EEPROM (shadowed in RAM).

Fixed NonVolatile Stored in serial EEPROM (shadowed in RAM) (attempts to maintain over
programming cycle).

Volatile Data Data Read
VariableA ref ref (Dynamic) data
uint® uintd
[|

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Training Supplement - Page 9

Vardec Parameters o

Output Data Type — The data type of the signal originating from the
output port. The Inherit from ‘Default Value’ option evaluates the data type
of the default value to set the block’s data type (e.g., the data type can be
explicitly specified as uint8 by entering the default value as uint8(100)).

The Inherit via back propagation sets the data type to that governed (where
applicable) by other connected Simulink/MotoHawk blocks. Otherwise,
the data type can be explicitly specified as an integer or floating point data

type.

Read and Write Access Level — Option to set security level on read/write
access from MotoTune (1 is the lowest, 4 is the highest security level). The
user’s security level is the minimum of the MotoServer communication
port setting and the license dongle setting. A security level of 4 is required
to create a new MotoTune online calibration; however, any security level will
allow the creating of a new MotoTune online display.

After opening (previously created) MotoTune calibrations/displays,
individual calibration/display variables will allow read/write access if the
security level set in the MotoHawk block is equal to or less than the user’s
security level.

Note that, for variables with both read and write access, the read access level must be
equal to or less than the write access level.

Use uploaded calibration values from MotoTune
Option to use or ignore values input from MotoTune.

View Value As — Option as to how the engineering value is displayed in
MotoTune. The Number option displays the engineering value numerically.
The Enumeration option displays an associated enumeration; for example,
if the Enumeration (Cell String, or Struct) is {‘'State 1’, ‘State 2', ‘State 3’}
and the numeric engineering value is 1, then “State 2" will be displayed in
MotoTune.

Note that this option is only applicable with Boolean or integer data types and that the
enumeration definition indices are zero-based.

The Text option displays the ASCII character interpretation of the value;
for example, if the engineering value is a vector with values [35 63 106],
MotoTune will display “#?7j".

This option may only be used with a uint8 data type.

Show Vectors As — Option to display (in MotoTune) the vector as a Wide
Row or a Tall Column.
This is only applicable if the variable is a vector.

Data Type | Size (bytes) MIE_

double
single
int8
uint8
int1l6
uint16
int32
uint32
boolean

reference

struct

struct container

struct reference

8

4 -inf

1 -128

1 0

2 -32768
2 0

4 2147483648
4 0

1 0

2 for S12, n/a

4 for other

inf

127

254

32767
65535
2147483647
4294967295
1

n/a

depends on magnitude

depends on magnitude

) T T T (S G 'y

n/a

inherits data types from fields in structure declaration

dependent on number of structure instances associated with container;
inherits data types from fields in structure declaration

2 for S12, n/a
4 for other

n/a

n/a

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Training Supplement - Page 10

Vardec Parameters e

Help Text — A description of the variable to be displayed in MotoTune.
Enclose the help text between single quotation marks.

Units — The engineering units of the variable to be displayed in MotoTune.
Enclose the units between single quotation marks. For example, the help
text and units for a group of calibrations may appear in MotoTune as:

A=)

110 Unitz1 This is help text for the first calibration
2.20 Units2 This iz help text for the second calbration
330 Units3 This is help text for the third calibration

“# Calibrations Group

Row Header Enumeration (Cell String, or Struct) — Headings for the
rows of the variable to be displayed in MotoTune. A row header is only
applicable if the variable is a column vector or a matrix (i.e., the heading is
for the rows). Specify the headings in a cell string format.

Column Header Enumeration (Cell String, or Struct) — Headings

for the columns of the variable to be displayed in MotoTune. A column
header is only applicable if the variable is a row vector or a matrix (i.e., the
heading is for the columns). Specify the headings in a cell string format.

For example, if the row header enumeration is specified as {'Row 1’, ‘Row
2', ‘Row 3’} and the column header enumeration is specified as {‘Col 17,
‘Col 2', ‘Col 3}, the variable will be seen in MotoTune as the following:

== Variable [L]EX

Col1|Col 2|Col 3

Minimum Value — The minimum allowable value for the variable. This will prevent a user
from entering an out-of-range value from MotoTune.
This value is in engineering units (i.e., after the gain, offset, and exponent have been applied).

Maximum Value — The maximum allowable value for the variable. This will prevent a user
from entering an out-of-range value from MotoTune.
This value is in engineering units (i.e., after the gain, offset, and exponent have been applied).

Precision — The precision of the variable as displayed in MotoTune. Enclose the precision
between single quotation marks using the syntax ‘0.DecimalPlaces’. For instance, if the
variable has a value of 98.76543 and the precision is ‘0.3’, the value would appear in
MotoTune as 98.765. The default precision of will display 2 decimal places.

Gain — The gain applied to the raw value to calculate the engineering value as observed in
MotoTune.

Offset — The offset applied to the raw value to calculate the engineering value as observed
in MotoTune.

Exponent — The exponent applied to the raw value to calculate the engineering value as
observed in MotoTune. The MotoTune gain, offset, and exponent are applied according to the following:

(engineering value as displayed in MotoTune) = (Gain * (raw value))*Exponent + Offset
MotoTune Group String — The folder name and hierarchy that contains the variable in
MotoTune. Enclose the MotoTune group string between single quotation marks, and use the
| character to delineate subfolder structure.

For example, if the MotoTune group string for Calibration1 is specified as ‘Group1 |
Subgroupl | Subsubgroup’, the variable will be found in MotoTune in the following:

&4 Calibration
= &1 SampleCalibration.cal [Offline]
R | Gmupﬂ
= 1 Group1
+ |1 Subgroupd
= | Subgroup1
= |7 Subsubgroup
@/ Calibration1
g/ Calibration2

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Training Supplement - Page 11

Calibration Management

There are several methods of calibration management
within the MotoHawk and MotoTune software.

A. Maintain the calibrations in the model. (Optional)
The engineer inserts correct calibrations into the default values of the
vardec blocks. Benefits of this approach are:
o the engineer can easily run the model in simulation and perform
software-in-the-loop development.
o maintaining the calibrations in the model means the application
is ready to run with simply a model build; no additional steps are
necessary.

The downsides to this approach are:
o online calibration changes need to be manually and tediously
transferred into the MotoHawk model.
o this approach neglects the useful calibration management tools that
MotoTune provides.

B. Maintain the calibrations in a .cal file. (Recommended)

The proper and recommended approach is to maintain the calibrations

in a .cal calibration file. MotoTune offers several tools for calibration
management. Although there are several different procedures that can be
used to update calibrations from one build to another, the recommended
approach is to merge the desired calibration values into the new .srz
build. Then, upon programming, the application begins execution
immediately with the correct calibration values.

This merge process is described below:
1. Build the new software.
From the MotoHawk model, press CTRL-B to build the new software.

The result is a New.srz and New.dll.

2. Create a calibration file.
In MotoTune, select File/New/ Calibration From Programming File-

Calibration Management

MotoHawk/MotoTune Files

.mdl

.Srz

dil

.cal

dis

log

The Simulink model file containing the MotoHawk application. This
typically exists in a project directory, which also has other MATLAB files to
complement the application, such as function files, .m files, library files, etc.

The compiled executable file. This is the file created during a model build
(CTRL:B) and programmed onto the module. By default, saved in C:\ECUFiles\
Programs.

A dynamic link library file also created during the model build (CTRL-B).
In summary, a vardec memory mapping; the correct .dll file is needed to view a
calibration or display file. By default, saved in C:\ECUFiles\TDBDLL.

A calibration file created in MotoTune. Contains calibration values, help
descriptions, units, etc. By default, saved in C:\ECUFiles\Cals.

A display file created in MotoTune. Contains an Excel-like display layout,
help descriptions, units, etc. By default, saved in C:\ECUFiles\Displays.

A log file created in MotoTune. Contains logged data with date, time, and
value names. By default, saved in C:\ECUFiles\Logging.

Select the latest build New.srz, and save as New_000.cal.
This calibration file is created offline and contains the default values from the model,
as it was created from the .srz build file.

Close the .cal file for the next step.

™
I News » R Calibration From Programming File. ..
Open P |EY Online Display/Calibration. .. Chri+M
q Save Ctrl+5 2 x
Print Setup...
= | S T R 1

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Training Supplement - Page 12

Calibration Management coneo

3. Transfer/upgrade calibrations.

The Transfer/Upgrade tool transfers calibration File | View Help
values from an old .cal file to a new .cal file. New =
In MotoTune, select File/Transfer/Upgrade, or press the Transfer/ Open r B
Upgrade icon. &l sove Chries n
For Source, select the file which contains your desired calibrations Prink Setup. .. .
(e.g., Old.cal).
2 TransferfUpgrade...
For Target, select New_000.cal. @ Compare Calibrations. ..
Press Start and take note of any differences outlined in the report. =l Brnwae
Then, save the new calibration file, overwriting as New_000.cal (or
select a new descriptive name).
4. Merge into the new build file.
Open the New_000.cal file offline. ! Calibration Explorer o x
Right click, and select Merge. Then select the New.srz. £ calibration
Note the differences from the default calibration values. = & TEST_011_00(
+ | Calibrations
Change the name to indicate a merged .srz (e.g., NewMrg000.srz), + [System Close
and save.

Revision Differences

@ Create Revision
®

5. Program the module. Partial Calibration
Program the module with NewMrg000.srz, which has the newest =
software functionality with the proper calibration values.

Merge
Find
Properties

Go Online

4 QFle

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net MotoHawk Training Supplement - Page 13

Analog Input

ECU
Hardware

Analog (0-5V) to Digital
Conversion (0-1023ADC)

System

Actual Sensor Characterization
(Engineering Units to 0-5V)

T I 0-1023
- i 0-5V 0B ADC
Range . | Analogto | Range
RQIRi— I— .| Digtal |1
J i \ ' converter
’ \ (ADC)
s 5
- % / A
£ % ' A
s Actual Sensor A I I \
/ Characlerizalion ke :-']
5V, I :I 1":.
I A
' '
Temperature | i 1.\
g e / ~.
= _//; J'Ir "l.
o . \
N Engineering unis ADC (Analog to Digital
' Counts) = V(1023/5)
1023ADC
5
2
§§
PAO%V Voliage 5V

l Motohawk
Model
I Digital (0-1023ADC) to
Engineering Unit Conversion
I Model Digital Sensor
Characterization
B
5 e Engineering Units —
o .
F 7 A ':L> Sensor Input into
I 1023ADC
Analog to Digital Counts
ADC
Vollage Counts
0.000 0
0.004887586 1
0.008775171 z
0014562757 3
0019550342 4
0024437628 5
0048875855 10
0.488758553 100
0.977517107 200
1.955034213 400
2932551320 BO0
3.910068426 800
4887585533 1000
5.000 1023

ADC=V(1023/5)
Discrete Integer

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Training Supplement - Page 14

PWM Output

PWM stands for Pulse Width Modulation

A PWM signal s a square signal that has 3 defining properties:

Amplitude (A), in Volts. Amplitude is set by the voltage source (e.g. DRVP), which
is typically fairly constant.

Frequency (f = 1/T), in Hertz.

Duty cycle (DC =Ty / T), in %. The duty cycle is the percentage of the signal that

Duty Cyols ([-4096,4096], int16) e is non-zero (when analyzed over 1 cycle.)
Py Output
" Pir: FIMJ1 . . .
Freq (.01 Hz, uint32) P 2) When used to control an output, the combined electrical and mechanical response

of the actuator results in an effective average voltage (this is a more efficient method
of controlling power than with resistive methods).
The PWM frequency is matched to the actuator to minimize oscillations.

PWM Block

A PWM-driven output can also be used in conjunction with a low-pass electrical filter
to produce an analog voltage, where the duty cycle is proportional to the voltage.

T LARGER FREQUENCY SMALLER DuTY CYCLE
« 'y —_— —_—
A
«— T —

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net MotoHawk Training Supplement - Page 15

Fault Management

Fault x/y setting | 3/5
cycle number -> 1 2 3 4 5 1 2 3 4 5 2
fault behavior Fault input -> 0 1 1 1 0 0 0
enabled Fault status -> S S A A A A A 0 0 S
sticky Fault status -> S S A A A A A A A S
save-occurred Fault status -> S S A A A A A 0 0 0 S 0 0 0
sticky-persistant Fault status -> S S A A A A A A A A A A A A

S = Suspected
A = Acted

O = Occurred

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net MotoHawk Training Supplement - Page 16

g

CHAPTER 1 : Intro to MotoHawk
About MotoHawk

ECM565-128 Developer's Kit

System Requirements

MATLAB™ [nstallation Procedure

Green Hills Software

Obtaining A License For Your MotoHawk Compiler
MotoHawk™ Installation Procedure
Creating an application in MATLAB™
Building Your Application

Assembling Your Kit

Starting MotoTune

Checking MotoServer

Programming the Module

The Program ECU status pop up appears
Creating A Display

Checking Operation

First Application

Generating Embedded Code

Introducing a Gain Stage

MotoHawk Data Storage Blocks
MotoTune Options

Calibration and Probing Blocks
Gathering data

Throttle Control Challenge

Pin Number & Signal Name

Fault Detection on Throttle Pedal

O ©OW 00 00 0 00 N OO0 1 & B W W N =

N NN R == =E = =B = =
W — —~ NN o o O O O

cw_@ew Eagle ‘

Mot oHguK

“...the difficult part of conjuring up the magic to control your engine or vehicle
is still complex. MotoHawk just makes it simpler to implement the magic.”

. About MotoHawk

MotoHawk makes it possible to run a Simulink model on a Woodward module.

MotoHawk allows you to access the Inputs and Outputs of the modules, schedule when to
execute tasks, manipulate the memory usage of the module, create a calibration interface,
and most importantly, allows a single step build of the entire application.

MotoHawk extends Simulink and Real-Time Workshop Embedded Coder to generate code
necessary to interface with the resources of the modules and control their behavior.

The goal of MotoHawk is to let the user concentrate on solving the control problem
rather than solving the programming problem. Programming an embedded module is
notoriously difficult both in terms of coding as well as actually transporting the application into
the module during reprogramming. MotoHawk addresses all of this to make the stuff that should
be easy actually easy. Unfortunately, the difficult part of conjuring up the magic to control your
engine or vehicle is still complex. MotoHawk just makes it simpler to implement the magic.

ooo

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Resource Guide: Chapter 1 Intro - Page 1

ECM565-128 Developer’s Kit

© © N O oA w

10.
il
12.
13.
14.
15.
16.

ECM565-128 Development Module
ECM565-128 MotoHawk™ Harness

w/Main Power Relay and fuse

Power Switch Asm. w/SmartCraft™ Connector
SmartCraft™ to dual DB-9 Adapter (GMLAM)
SmartCraft™ to dual J1939 Adapter

10" SmartCraft™ cable w/terminating resistors
10" Smartcraft Cable

SmartCraft™ terminating connector

6 port SmartCraft™ hub (2)

Optically isolated 4 port USB hub

USB to dual CAN Adapter

Green Hills Software MULTI2000™ compiler*
Software Installation CD*

Security Dongle*

Boot Key

MotoHawk™ Resource Guide (this manual)

*Green Hills Software, Security Dongle programming, and applications
included on Software CD are subject to your specific order and may not
be included in this shipment.

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Resource Guide: Chapter 1 Intro - Page 2

System Requirements

1. Windows XP (any SP,) Windows 2000 (SP3 or SP4)
Windows NT (SP5 or SP6a)

2. Pentium Il or IV, Xeon, Pentium M, AMD Athlon,
Athlon XP, Athlon MP

3. 345 MB disk space

4. 512 MB RAM (1 GB or more recommended)

5. 16, 24, or 32 bit OpenGL capable graphics adapter
(strongly recommended)

6. Microsoft Windows supported graphics accelerator card,
printer, and sound card

7. 1400x1050 display (min)
(1600x1200 strongly recommended)

MATLAB™ |nstallation Procedure

Insert CD in drive. If the installer does not start automatically,
click Start/Run and double click on Autorun.exe.

Follow the instructions on the screen.

Note: If you have a network license for your installation you will need to
obtain a demo license from The Mathworks before arriving for training.

Install all of the following:

MATLABR
Simulink
Real Time Workshop
Realtime Workshop Embedded Coder

It is strongly recommended that you also install:

Stateflow
Stateflow Coder

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net MotoHawk Resource Guide: Chapter 1 Intro - Page 3

Green Hills Software

Insert CD in drive. Click Start/Run and double click Setup.exe.

Follow on-screen instructions.

Obtaining A License For
Your MotoHawk Compiler

Once you have completed installation of the compiler on
the unit that you will be using to develop your application,
you must generate a request for a license.

Select Programs/MULTI2000,PowerPC v3.6/
Licensing/License Request Generator.

Select OK at the following screen.

Each MotoHawk SDK includes one node locked license.
Contact your sales representative if more are desired.

Indicate which type of computer you have installed
the compiler on and select Next.

Initially, you will want to request an evaluation license — this will get you
up-and-running quickly.

Select Next.

The next message window contains the License Agreement.
Read it, then select Yes to continue.

You must accept License Agreement in order to use the compiler.

The next window contains the license request.
Print or Save To File, then Send it.

(An evaluation license will be sent to the e-mail address indicated
in the Customer Information window, usually the same day.)

Follow the instructions that accompany the license file.

A hard copy of the License Agreement was included with your
SDK.
FAX a signed copy to (805)965-6343, Attn: Mickey Neal.

A permanent license will be e-mailed to the address
indicated in the Customer Information window
(usually the next business day.)

Green Hills Software License Request Generator

©aiivmte bidoatin ade 1

T st & icmrem provade B riarvaon bates el s Best
e) A P e st i o W

T | A 1
vl s
Pt iy
Comgary mm g B
1 sspharns sk C.scle

(= iy [LHA

Jom 1
o

Lo]

X

Windows 2000 Licensing Information

Frumofl Windowns 2000 o suoow il b worrsier-isded Sorwer v, o degeteded busmee
il OB TR TR LOH DL TV W ROWE JRUE M M B LHY_ LMo

Peard Pl e Rl e 1 T BN e

Couin bl GBI 443 FOE DWTIADY BRpRT W ACNIAT UPTYR Wemduwy) 88 458888 gErey
Windann 1000 rteven sy brchor aormely 58 § RoEie s however, STe et Bk

Baien Faiiv raar 1 driie
(S

lirenre I ramsisan

Wins ol zrpey 5

e
= Canpuier bebed kesase sllbe lad i bt comguien
Earagiirchon® Bewvsd sl b locker? 11 3 divgle
Elatig btres of =al bt d-shin 13 e 77 g Sl
Eowpder Tppe
T Logiep
Dieddep

% Bk Mt

Bl

License Type

Liseste Ippe

Letoes Tl
o b eghastr
" P

[®actons Onfe Sapomd

Liienie Auicciwesi

Plzane iwod e fufioeing looras ageomartie i1 enbiey. 1| jou agree
ke s hewrwe ol Thee o Sgpecmirl, pliace chel, ™Yieu

Pz ek st the lmru. ol b pesceding erse sg eneart?

s dgpns s promand W ch i et oy dred ol
m:l.#qtuw n, r;.h.. ;... -

Lirenre Hequarl

Sk s eouedt v
- e]

T 06 B3R5 5202
:'II1| & rrgemil b g leres Lo s MUL T1 0000 e e ot Gissn Ml ool £l

Wvebeck - MULTI 2000, Powal"C w26
[Eetug Dorver wee PO

{C0 Dibizientd Trore: Ginoe Hils Pty
Miceres fvaladdle Corputs Locled
Miteras 1304 Eraughor

|Syetere Name WllallzL

105 Wireiow 0

[Sarvei Coon JOPALSCRS JATA FETT E16

- :l HEVE READ AND ARREE TARDE B THE TEFMS OF THE FITLOGED GRAETM HLLE W

Bat. | ged Ll | T

| o tofie

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Resource Guide: Chapter 1 Intro - Page 4

MotoHawk™ |nstallation Procedure

Go to http://mcs.woodward.com/ web site and register.

Have your instructor or sales representative upgrade
your access level.
(Log out and back in, once your access level has been updated.)

Navigate to the “Support/Downloads” section.
Install downloads in the following order:

KvaserDrivers—
MotoServer
MotoTune
MotoHawk

Follow installation instructions for each one.

Note: It is recommended that you do not plug the adapter cable
into the USB port prior to installing the Kvaser drivers.

It is also recommended that you download the CAN King
software — a useful tool when working with CAN networks.

Apglication Support

MotoHawk 25080
Beleasea

meMTeE redwan com

MotoTron Control Selutions

¥ & N

Wosokawd® Sulie

Wiee's Talling
MotoTroaT

Wi

Website Resources http://mcs.woodward.com

Gasech Gattings News

= Optianal Fifes -
- ECU Dwisahenta -
- By Decumersation -
= il A -

= Bela Reloasos

<) Mobebawk 20080 Betnl for MATLAD B.51 [RA210) e T8 (RI008) wwrws 43 45 P

Flerpireenenis: MATLAR 8.8, (RN 1] s T8 R
& LA

Se— 1 - ek TP A e o P
= MobaHwwk Batad Por MATLAB T.3 i 7.7 (R2006N]) ™o 1383 1

=) Mobekawk 2080 Detab relssss notss w1 L€)
e $5 10F RRNF P 0D I TG

— Ruquirsd Files

1 Wora swk 206D Felsdid HOIES g Qa3 e

=) Mobekawk 2080 for MATLAB 6.5.1 (R11.7] o 7.0 (RI008E) wes 1343390

=) Mobedawk 20080 for MATLAB 7.3 (RI0080]) o 7.7 (RI0SS0} mures 0342 3
RIS R L0 L o TLCETHLA (AR il | CEA Vi FE) e T Dol FACOeeS

Motchizwk 2008y 597 for MATLAB S50 (R13.1) to 7.0 (R2008a) resws BH- 1

T

bx: RARTLAS A 4

= Motoawk 2008a 507 for WATLAB 7.3 (R20080} to 7.7 (20086} serum LEE

i S

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Resource Guide: Chapter 1 Intro - Page 5

Creating an application in MATLAB™ Default Agglication

Once you have completed the installation of your software,
create a model to verify operation.

Start MATLAB: Double click on the MATLAB icon
on your desktop or select from the programs menu.

The following screen will appear.
At the command line Y .5 SRR
type: motohawk_project (‘MyFirstProject’)

BRIy | i

Press the Enter key. i
the following window will open
(Allow 1-2 minutes for the application to complete.) TR S e e T P T I
:m " ol oriank ﬂlﬂﬁﬂ:ﬂﬂhﬂll
g T
sTmIra Trpar ool of mooe W et el
:. ot [nm
MyFirstProject
Take note of the: Me——
Target Definition ; =
Main Power Relay Pofetigudk o | == |0
Trigger blocks T e .
These comprise a rudimentary system. The executable Bl it ezl
algorithms reside in the Triggered Subsystem (Foreground.) [roisruam " .
ld:;:.. H
‘ i ! @
T e Y
SRR
s
R
E._‘.E'.r'r....:".'.'.'.’.'.'_'::h

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net MotoHawk Resource Guide: Chapter 1 Intro - Page 6

The MATLAB window will look like this

Fis B Vew Detug Owsiep Wados Heip
DiaF L Sl - B F ooy Ot ¥ . 0]
Building Your Application Al
freT. [ey —— [e— BN gL BUAPLSE, BARSUT DATLAN BALN SN faed CIeE n Bl .
PreSS CTRL+B 3 | W Decd RTINS '. "
| ¥ pivkan e X100 B
i"'""" Pede et 33008 113008 EnELERinNNEy Swnslwen.
. N N ety et o Naaw V), XN JWIE fall
The MATLAB window should look like this Mg chomam We O 3,080 3038 T o mrmated s S e e e e e —
SbyF P st S Owc? TN 1IN0 Thew b on seecated shas B i modbel s 0 apaced e late ssery apdais (O
If the message says “Successful MotoHawk Generation (No
. - J ¥ Fiu3ary
Build,)"check your Greens Hills Compiler installation: Type et i LR RAT eI sarePrcsery
a 0 B R N £ 201 ERTLANTL suruL RpF KEauFre | B e ey
motohawk_check_ghs” (a zero indicates that you have a e s [=
problem with your Green Hills Compiler installation.) wonsaee grazacm |
If you get an error, check with your instructor or e-mail the log file
(MyFirstProject.log in this example) to: MCSsupport@woodward.com.
A Technical Support Representative will contact you.
Once you have successfully built your default application,
open Windows Explorer and navigate to the C:\ECUFiles
directory. L TLA
Fie Edit Desbisg Dasshiog Window Feip
You will see a number of subdirectories including Programs and Dok &l (WO P ooy, [Cosnasnemfranoea) - 6]
TDBDLL. These subdirectories contain, respectively, the .srz el bk il]
and .dll files which are used by MotoTune to program the ECU. no RS B | e I
Foes - fmtpe |Lasinosted | besreten [oat 1505
i [Foddar Dwc 2 13| | Appi 23
dlmagei Feddar Cwee 2, 2005 113320
ZILbranes Folder D 2, 2006113920 Jiaptingcion: By g
AMyFralPrigie_Buld Feddat Dwc 2, 2005 120138 FLASN; 1372
ZIshy Folder D 2, 2006 120115 EER Aot =k
[MyFirstProet tag L0 Fil Dse 2, 20061201 40 s
-M:FHIIFIM redl Wads Dwc 2, 208 120140 o i
[BMFuniPiect_choam Wls Dec2, 008 113030 Tris Be is oxecuted when tha prajact mod s ia closed A
M FiustPreject_sstupm W Dac 2. 2005 113020 . This e in ssculed when the praject medel Bla i opanad, ind Befors avery updits [0 :ﬂ'm_:“'u'_ sty
| Bparen’Searus s o8)
e | asaassassarce
o= Ayaren’Srakus /o8
[Hyaten'Perfocmn
nu".‘ur:nv‘k‘_p:u_‘u:\.':lu AyFLs
1 3 1ItIB PR PP Juccessfiul compl
4105 FR Elapsed Bulld Time:
Succappful Mocq
LLLLLEL Rl

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net MotoHawk Resource Guide: Chapter 1 Intro - Page 7

Assembling Your Kit
Install your isolated USB hub and apply power.

Insert your silver MotoTune dongle into the hub.

Connect the USB to CAN adapter and wait for Windows to
auto-detect it. When the New Hardware window appears

select “No, not this time” and click on next. Then, let Windows

automatically install the drivers.

Connect the Development Harness to the module
(see datasheet for proper positioning.)

Connect Power branch to a 12 volt source (9V to 16 V, 3A min.)

Attach the SmartCraft connector, USB to CAN adapter, and
the power switch to the 6 position hub.

Starting MotoTune
From the Start menu (or desktop shortcut) select
All Programs/MotoTools/MotoTune.

The following window appears

The name that was used to order your kit should appear at the top of
the window. If it indicates [Unlicensed,] then you need to insert/reinsert
the silver dongle.

Checking MotoServer
Right-click on the Satellite Dish icon for MotoServer.

(Located on the system tray.)

Select “Ports”.
If not already listed, Add location PCM-1 as a CAN type port with Access
Level 4, check the box on the list, and click on “Apply”.

You are now ready to connect to the module.

Programming the Module
Turn power on and apply ECUP signal via power switch.

Select File/Program, in the MotoTune window.

The following pop-up appears

=
Wy Recant
Documants

€,

Daibaas

i

[YPY p—

Lt
by Compi b

This is the file created when you pressed CTRL+B.

Double-click on the .srz file in the window.

-
Uy Pl orminh
Lo
PN

Lk i | (L) Pragrimsi -

= e Fresrogect_001 9z

Vi o g Priogn ey Fles " 2" 5"t

- Ll sty vl

r

e

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Resource Guide: Chapter 1 Intro - Page 8

The Program ECU status pop up appears

If the Program ECU status pop-up doesn'’t advance to
Connecting, check your CAN to USB and SmartCraft connections.

If they are operational, turn power off. Install the BOOT KEY
from your kit onto the SmartCraft hub.

(ECUB55-128 users will also need to move the fuse from the

Normal socket to the BOOT socket to insure boot loader is invoked.)

Double-click on the .srz file and apply power.
If this does not work, check with your instructor or send
an e-mail to: MCSsupport@woodward.com.

When you see the Programming Successful message,
you are ready to create a display for your application.

Creating A Display
In the MotoTune Window, select File/New/Online Display/
Calibration.

Select Display on the pop-up and click on OK.

The Create New Display window appears
Give your display a meaningful name (ie. MyFirstProjectDisplay.)
Select “Next” for default Row and Column settings.

Select “Next” for default Status Bar and Tab Control settings.
Use default Sheet1 by clicking on “Finish.”

The following should appear

Click on the “+" next to the MyFirstProject folder
(listed on left side of the MotoTune window.)

Open the: >Foreground folder
>Controller folder
>Plant folder

Double-click on the Foreground block in your
Simulink model.

Note the one-to-one correspondence between the MotoTune folders and the
subsystems in your model.

Lexching bor v ECLY an PR R

| Coresl

(et i Fuiinl b s s

gl el

[cpiain/nuiom 1}

Her iy ol wocd you i
e caplay 4 mially contsnT

R (40 3

Colerw 70 T

= MyFirstPreject Display

-

£

iilﬁi:i:|:

=

::|‘-i|'a

Bk

A\ Shem1 [
srrected (PO 1]

£ L

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Resource Guide: Chapter 1 Intro - Page 9

Checking Operation
Open the System folder, then the Performance folder.

Drag each of the display variables onto the spreadsheet.
Note that your system is running — these are its vital statistics.

Cycle the power switch off, then back on.
Note that the display values briefly disappear, then return.
The Main Power Relay can be heard releasing and engaging.

Close this model by clicking on the red “X” in the upper right
hand corner.

You will be prompted to save the model. We are done with this one — you
may save or not.

First Application

Click the Simulink icon

_ Simulink Icon:
located top of the MATLAB window.

[® Simutink Library Browse:
FR= E&t View Hap

D=

Commsnnly Liped Blocka: s, Tossnky
U o

= T Sk
& Commaony Lised Bocks
B Contrucis
& Destorfiruities
3 Discrets
& Loge and Bt Opsrationd
B Lodkip Tabkes
3 Math Operations
& Madal Vertlication
B Miodal-vWick Lsies
& Ports & Subsystems
& Signal Artrbutes
& Sgral Roueng
B Srks

Simulink’s Library Browser appears

B Sources
B Lser-Defired Puncions
& Additiorl Math & Cescrete

These are the Simulink and MotoHaw blocks which, are used for creating
your application models.

In the MATLAB window, move up one level to the “work”
directory. Create a new directory “MySecondProject” and
double-click on it.

+ [Motoawh
+ W MotoHewk Arnotatons
+ W FeakTime Workshop

+ W Sk Exira
W Stateflow

In the library browser, click here

A new model window opens.

Note the status window in the lower left hand corner.

It indicates ODE45 this stands for Ordinary Differential
Equation 4th and 5th derivative (Dormand-Prince method,)
which is the type of solver that will be used for simulations.

Generating Embedded Code
In order to generate embedded code we must
change to a fixed-step discrete solver as follows:

Select “Simulation” at the top of the window, then
“Configuration (or Simulation) Parameters.”

+ W P Time Workshop Embedd

Lesge arel B Dipeatiors

Lwkiigs T skl

Mt Opamatiors

ol Vi gtion

ol il

Pors & Staychura

Sigraal dskutwn

ugratl Bnirg

The following window appears

Using the pull downs, change Type to Fixed-step, and Solver
to Discrete (no continuous states.)

T

o | Geod | e

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Resource Guide: Chapter 1 Intro - Page 10

Click on Apply and OK.

In the library browser, click on MotoHawk. Drag the MotoHawk
Target Definition block from the bottom of the list into your
model. Double-click on the block and verify that the target
module is correct for your kit (80 pin, 128 pin, etc).

The Memory Layout should be DEV.

Click on Apply and OK.

From the Trigger Blocks library, drag a MotoHawk Trigger block
into your model. Double-click on the block to open the dialog
box and set the pull-down to FGND_RTI_PERIODIC.

Click Apply and OK.

From the Extra Development Blocks library, drag a
Main Power Relay block into your model.
(Default settings will serve our purposes for now)

From the Ports & Subsystems library drag a Function-Call
Subsystem block into your model. Double-click on this block
and a new window appears.

From the Sources library, drag the Sine Wave block
from the bottom of the list into your model.

Click on Sinks and drag a Scope block into your model

Click on Math Operations and drag in a Gain block.

Note the greater than (>) symbols on each block. These are Simulink ports,
which are used to control the signal flow through your model.

The Sine Wave block, being a signal source, has only one (output) port.
Likewise the Scope block, being a sink, has only one (input) port, while
the Gain block has one of each.

More complex blocks will have more input or output ports or both.

Select the Sine Wave block, hold down the CTRL key

and click on the Gain block

Notice how Simulink connects the two blocks. This technique can be used
to “wire” the blocks to one another and is especially useful when wiring
signals to or from consecutive ports on a block. Simulink will start at the
top and work down either side (in or out) of the block.

At the top level of your model, connect the trigger block to
the subsystem block. Select File/Save As. Give your model a
meaningful name (ie. MySecondProject) and click Save.

O .

Pl R W v (R A PR

el e D EWES - REE

~

Mot oHguk

Target: ECU555-80 (DEV)

Floating Point: single (32 bits)

Stacks - FGND: 3072 BGND: 2048
IDLE: 1024 IRQ: 1535

Heap Size: 4096

DLL Filename: MySecondP_013

SRZ Filename: MySecondProject_013

Main Power Relay
On Delay: 100 ms
Off Dalary: 250 ma

Mobsiawk Function Tr
FGHD_RTI_PER
Priciity Crder: O

Total FLASH: 186752 T
Total EEPROM: 1784
Total RAM: 1?%33 rre—
App FLAEH 1612
App EEPROM: 1753
App RAM:
b
o,
IV\\/ 1
SR Gan =5

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Resource Guide: Chapter 1 Intro - Page 11

Press CTRL + D.

Notice that Simulink has generated an error message and highlighted the s o s e fac' B

offending subsystem and block — informing us that “only constant or L o L L
inherited (-1) sample times are allowed in triggered subsystems.”
Double-click on the Sine Wave block to open its dialog box. functian

At the bottom of the dialog box the Sample Time is zero.

As you may have guessed this means continuous. e T e Sirw
]]) b [Cabbeation)
Change it to -1 (inherited.)
The subsystem will now inherit its sample time from the parent (level above,) B
which is FGND_RTI_PERIODIC or 5 milliseconds. L lc,:,;;m? amm— T H E
. Trigonometric S
Press CTRL + D again. " Funcson o
No error messages are generated. T
g g sec) -
Double-click on the scope — a pop-up window appears Product

complete with grid and axis markings.

Select Simulation/Start — a Sine wave appears.

Double-click on the Gain block, change to 100.
The small triangle in the middle of the window at the top can be used to start
the simulation. Note that the Sine wave has changed.

Click on the binoculars icon
This will scale the display for your input automatically. Clicking on the name
of the subsystem (Function-Call Subsystem) opens it for editing.

Change the name to “Foreground.”

Press CTRL + B
MotoHawk builds your application.

In the MotoTune Display Explorer pane, right-click on Display1
on [PCM-1.] Select “Save As” and give it a meaningful name

(ie. "MyFirstProjectDisplays”). Use pulldown to specify the folder.
Note that while MyFirstProjectDisplays contains only MyFirstProjectDisplay,

it may contain others that provide different views into the system.

Right-click on MyFirstProjectDisplays and select Close.
Currently, this is the only way to close one display and open another in Motolune.

Select File/Program and download MySecondProject into
the module. Create a new display as above.

(ie. “MySecondProjectDisplay.”)

Drag in your System Performance variables and note, via your
display and the Main Power Relay, that your application is running.

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net MotoHawk Resource Guide: Chapter 1 Intro - Page 12

Modifying the application

Allows you to gain some control over its operation.

Double-click on the Foreground block in your model, select the
Sine wave generator and the gain block, press the delete key
to remove these blocks.

From the Calibration & Probing Blocks library, drag a

motohawk_calibration block and a motohawk_probe block MOtDHaWk Modsd Inls

into your model. Code Generatlon Toolbox r.mnmuﬁllf ﬁcﬂm
MMW

From the Extra Development Blocks library, drag in a
motohawk_abs_time block.

Double-click on the Calibration block and change the name to I : = =z
¢ i Dabat W nggars
TThWO'PI and value to 6.28318. MotoHaguk
e single quotes must be used. _mmm _Twm
From the Math Operations library, drag in a Product block. - ool
Double-click on it and change the number of inputs to 3. s e iy BuE SN e
. | — i Sme: A000
Right-click on the TwoPi block and drag down. i Ry ELL Pilnams: Molcbéand._000
o n SRE Filarayme: ModoHzwk D000
A duplicate block is added to your model. ¢
Ardvanced Cigtal WO Leakup Tables Total FLASH 0
i i fgn —_ 4l EEF 0
aDr?(ljJti)tls-\(/:elall(Lkeqtg tlhe new block and change its name to “f e e — e 0
. App FLASH 0
App EEFROM o
Wire these 3 blocks to the inputs on the Product block. ik i App R
—_— ¥ —] e,
From the Math Operations library, drag in a Trigonometric e L e
FunC’[iOI’l blOCk' [Faull Managament o8 JIBS0
If it is not already set to Sine, change it. s ik
— —T
4] Books. Faut Managemart Slacts Diingnasiia Blects BA0 Biocks
Wire the output of the Product block to the input of the - 3 -
Trigonometric Function block. R A S oecnark Blocia Bt
Wire the output of the Trigonometric Function e —— T r— Companent Blocks Huld
block to the Scope block.
Doublelick on the Probe block and change its name to Sine. fies Sl it S
— e | ———r e ee—re— | ————————cr— — e 1
Kool Biscks Fhed Point Blocks Sysdem Dibug Bocks OOP Slavas

Place the cursor over the input port of the “Sine” Probe block.
Notice that the cursor changes into a cross-hairs.

Click on the port and drag to the wire connecting the
Trigonometric Function block and the Scope.

A connection dot appears on the wire and a wire connects to
the Sine Probe block.

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net MotoHawk Resource Guide: Chapter 1 Intro - Page 13

Your model should look similar to this

Press CTRL + D (see that there are no errors.)
Press CTRL + B (verify that the build is successful.)

Close the display in the MotoTune Display Explorer pane as

above and program the module with your modified application.

Select File/New and create a new calibration.

In the Calibration Explorer pane, Click on the “+" next to the
MySecondProject folder.

Double-click on Foreground.
A Calibration sheet opens in the right hand pane of the
MotoTune window.

Create another display sheet and drag it down or to the side
such that both are visible.
You should be able to see the Sine value changing.

Right-click on the cell containing the Sine value and select
Properties. Click on Set Fast and verify that the Add to chart/
log box is checked. Click OK.

Select Chart/Open Chart.
A pop up appears displaying your Sine wave.

In the Foreground sheet change the “f” value to 2.
Note the frequency changes when the Enter key is pressed.

Change “f" to 0.5 — observe change in chart.
Occasionally, flat spots will appear on the chart — a result of Windows OS
“garbage collection” and other operations, and is no cause for concern.

Introducing a Gain Stage.....................

Select the wire connecting the Trigonometric Function block
and the Scope and press the Delete key.

Right-click on the TwoPi block and drag a copy to one side.

Double-click on the new block and change the name to
‘Amplitude’ and the value to 10.

Likewise, copy over the product block and change its Number
of inputs to 2.

Fe B ves sl Fors Tooa Heo
O uES = o (e v BB RETT#

L]

function

T“[gl:‘l = 52832
braton)
1. !
=1
(Calibration)
(7
T
(s8]

Method 1 — add a Gain block from the Math Operations library.

(Bl Ty o e ———

Sans
X P sin | 2 D
Trigonomatiic Seops
Funection
Product

......Two methods for introducing a gain stage

s Ted [l Fescapersn

Method 2 — add a Product block from the same library and a Calibration block from the

MotoHawk library.

In the case of a Gain block; Real Time Workshop will allow us to change the Gain value

during simulation but our objective is to generate embedded code.

The RTW Embedded Coder treats a Gain block as a hard-coded constant which, precludes
changes at run-time. Therefore, we will use the second approach; an “Amplitude”
calibration block and a product block.

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Resource Guide: Chapter 1 Intro - Page 14

Connect the new calibration block and the Sine block to the
product block inputs.

Wire the product block output to the Scope and Sine probe block.

Your model should look similar to this

P B Yo Seulsion feest Tk Hot
1T FER

Press CTRL + D and verify that there are no errors.
Then press CTRL + B to build it.

Program the module with the new application. Set up your display
and calibration windows in MotoTune as before.

Open a chart for the Sine probe and verify the amplitude value.
Now change the amplitude to 100.
Note that the display is rescaled for the new value.

If a Cosine signal of the same amplitude is also needed:

Hold down the Shift key and select the Amplitude,
Trigonometric Function, Product, and Sine Probe blocks from
the Right side of the drawing.

Right-click and drag down to copy them.

Wire the blocks together as before, connecting the input of the
Trigonometric Function to the output of the Product block on
the Left.

Change the Trigonometric Function to Cosine and rename the
Probe block accordingly.

O 10

[m]

LLLEE

Ampitude = 10
{Calbration)

:

Preseti

X e)

P D Vew feedson P ok P

O @aa =

(=]

Bhon

TPt 5 380
Catraton)

* BmBE wEme

oo

O mbtrabon]

|

Your model should look similar to this

Press CTRL + D.

Read the error message. Simulink is complaining that the name ‘Amplitude’
is not unique. We could rename this, but we know that the value is important
and it would be convenient to be able to re-use it. The way to do this is to use
the MotoHawk Data Storage blocks.

MotoHawk Data Storage Blocks

From the library, drag a motohawk_data_def block and
a motohawk_data_read block into your model.

Double-click on the motohawk_data_def block, change the
name to ‘Amplitude’, change the Storage Class to constant,
and verify that “Attach a VarDec for Visibility from MotolTune”
is checked.

-

'--rn. T
oo

ol

i

k]
st
=E_F

-'\'\?m'{
WA

Py ld

[l Tedd Femiipissie

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

M

otoHawk Resource Guide: Chapter 1 Intro - Page 15

Highlight the two calibration blocks called “Amplitude” and

delete them.Data Storage Blocks: A closer look

Double-click on the motohawk_data_read block, change the Double-click on the motohawk_data_def block.

name to ‘Amplitude’, and drag it over to one of the loose wires A brief description of the block’s parameters appears at the top of the dialog box. In addition
left by the previous deletion. . to the variable’s name, initial value, and storage class, we can specify a data type (click on the
pull down to see them), and an Output Reference Data type (for pointer based operations.)

e e 0000 o

Right-click on the motohawk_data_read block and drag a copy
over to the other loose wire.

Press CTRL + D again.

No errors should be generated.

The Storage Class Parameter...
allows us to specify the type of resource that will be allocated for the variable.

e e e oo o0

Constant, as the name implies...

Build your model, program the module, and set up your does not change unless a tool changes it.

display and calibration windows as before.

e e e oo o0

Volatile...
will be re-initialized at power up.

o e

(using the MotoHawk Data Storage blocks continued)

Non-volatile...
will be preserved across a controlled shut-down/power-up cycle (when MPRD block or similar
construct is included in the model).

e e e oo

Right-click on either the Sine or the Cosine value and set the
properties to:

o e

>Fast
>Add to chart/log
>Apply to all

Click OK.

e e e oo o0

. Attach VarDec for Visibility offers:

Select Chart, Open Chart and observe your signals.

e e e oo o0

a-choice of which pane to view it in: Calibration or Display.

the_aption to restrict Read and Write access level.

whether to use uploaded calibration values from MotoTune.

how-to-view the value: Number, Enumeration (on, off, running, stopped,) or Text.

In the calibration pane change the Amplitude value and
observe the changes in your signals.

e oo o o

.

e e e oo o0
.

For calibration values that are used in only one place in the model, the

motohawk_calibration block is a convenient means of introducing the . Select the Help button at the bottom of the dialog box to view remaining options.
variable. :

If the MPRD block is not used, a motohawk_store_nvmem must be included in a background
subsystem in order to execute the transfer to EEPROM (with the caveat that there are a limited
number of write cycles for the EEPROM devices.)

When a calibration is to be used in more than one place, a motohawk_data_
def block with motohawk_data_read blocks is best.

e o o
e e e e e e 0o

ReadMore............coiiiiiiiiiiiiennnl t Also, when a revised model is downloaded to the module, the values stored in EEPROM will be
: loaded into RAM unless the structure has changed or the RestoreNVFactoryDefaults function is
] . invoked from the System\NonVolatile Storage folder in the Display pane.
MotoTune Options.o oo NN - .t
Example: You are adjusting calibration values and you decide to change the logic in
Selecting Attach VarDec for Visibility from MotoTune expands your module (ie. change a greater-than to a greater-than-or-equal-to.) You can rebuild the
the dialog box giving us more options. application, reprogram the module, and pick up where you left off, without having to up-load

the calibration.

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net MotoHawk Resource Guide: Chapter 1 Intro - Page 16

Calibration and Probing Blocks
Another useful block is the motohawk_override_abs block
from the Calibration and Probing library.

Drag one into your model and place it over the wire connecting
the first product block to the trigonometric function blocks.

Note: Simulink breaks the wire, making the necessary connections.

Double-click on the block and give it a meaningful name
(ie. “Angle_Override”.)

Click on Apply and OK.
Press CTRL + D and CTRL + B.

Program the module and set up your Display and Calibration
panes as before.

Your model should look similar to this

Drag the two new parameters from the Foreground\Angle_
Override folder into the Display spreadsheet.

Start a chart for your Sine and Cosine waves.

Set Angle_Override_new to 3.14.

..Display or Calibration... What's the difference?
Click on the value for Angle_Qverride_ovr.
A pull-down arrow appears next to the cell. Displays allow the Engineer or Technician to monitor or manipulate signals in the system to
establish conditions necessary for testing or calibration.

The changes made via Display variables are not saved in the .dis file and so do not persist

past the MotoTune session.

Click on the pulldown and select override.

Look at your chart to see the effect of this change after
pressing Enter. As expected, the Sine value goes to 0 while the

Cosine value goes to -1. On the other hand, Calibration changes are saved in a .cal file and can be Merged with or

Transfer Upgraded into another calibration (or .srz) file to create a new .cal (or .srz) file

The override is a display, not a calibration. which contains the desired changes.

@00 0000000000000 0000 00

Read more.......cooiiiiiiiiieenenennnnns.

Gathering data

We have seen how a data definition block is used to introduce
a constant into the system. Now, look at how it can be used to
gather data from our system.

From the Ports & Subsystems library, drag in an enabled
subsystem and delete the scopes. Double-click on the

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net MotoHawk Resource Guide: Chapter 1 Intro - Page 17

___—________________
enabled subsystem and a new window opens up.

Delete the output port and copy the input port by right-clicking
on port 1.

From the commonly used blocks library, drag in a constant
block and a sum block.

From the math operations library, drag in a math function block.
From the discrete library drag, in a unit delay block.

Right click to copy the constant block. Set the value of the new
(constant1) block to 200.

Double-click on the math function block and use the pull-down
to select mod (modulo) function. Click on Apply and OK.

Right click on the mod block and select format and flip block. et i et et s
Likewise flip the unit delay and constantl blocks. T T IR — EmEs. wE@ie

Wire the constant and mod blocks to the sum block inputs.

Wire the output of the sum block to the input of the unit delay
block and the outputs of the unit delay and constantl blocks 1 *
to the inputs of the mod block. Constant

From the data storage blocks library, drag in a motohawk_ et
data_write block and make a copy of it.

1
Math Linit Delay

Function

Double-click on the first data write blocks. Name it SineData.
Using the pull down, set data structure to vector.* 200

Constant

Name the second data write block CosineData and make it a
vector* as well.

*When you set up the Data Write Blocks as Vector, select ‘Write Scalar into @ Pdats b wite

) h In1 SineData
element by index”. ke doublafidx]

r——

Y

Wire the idx input of each data write block to the output of the
sum block.

=z) P+ data aka Wi
Wire inputl to the data input of the SineData block and input2 Inz e

to the CosineData block. iy doublefidd
L

L J

Your enabled subsystem should look like this
Save file and close this window.

In the Foreground window, right-click on the

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net MotoHawk Resource Guide: Chapter 1 Intro - Page 18

Amplitude data definition block and make two copies.

Double-click on the first copy, change the name to SineData,
change the Storage Class to NonVolatile, and change MotoTune
Window to Display.

Place the following in the Initial Value box: zeros (1,200.)
Click Apply and OK.

Double-click on the second copy, change the name to
CosineData, Storage Class to NonVolatile, and MotoTune
Window to Calibration.

Click Apply and OK.

Place the following in the Initial Value box: ones (1,200.)
Copy the ‘f' calibration block and rename it.

Log and set the initial value to zero.

Wire the Sine signal to In1 and the Cosine signal to In2 of the
enabled subsystem.

Wire the Log block to the input at the top of the enabled
subsystem.

Your model should look like this

Fis B vew Seulmon Fome Took e

D& ao " Ml e = HEmRD@ L 11 FES
r—
= -
[L]
==
o [
-
—
|
—
= =
“

—

Sty

= =

g
=

el = Conmn

= =]

—
Es

Press CTRL - D. If there are no errors, press CTRL - B.

Start MotoTune and create a new display and a new calibration.
In the display pane expand MySecondProject and Foreground.
Drag SineData into the worksheet.

Note that all of the values have been set to zero.

In the calibration pane, expand MySecondProject.
Note the folder and sheet of paper, both named Foreground.

Expand each to see their contents.

The folder contains the CosineData vector array (another sheet of paper). The
sheet of paper contains the scalar variables. Both have been defined in the
Foreground layer of the model and the default group string was used.

Confusing? Read morecooeeeene..

e e 00000000000

. « . . Two ways to get around the confusion:
The first would be to utilize the Show MotoTune Group check box and explicitly name the
MotoTune Group String.

The other would be to place the data definition blocks in the enabled subsystem.

The system designer needs to decide what is the best way to organize these data
structures, a CTRL - B is required to generate a new DLL.

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Resource Guide: Chapter 1 Intro - Page 19

For now, double-click on the Foreground and t
sheets of paper and arrange them in the wind

Copy the “f” box and label it “Log”; set the val
Put the following in the initial value box of Sine
“zeros (1, 200). That is one, comma, 200, not twel

Do the same for CosineData.
Your window should look like this
Note that the CosineData array contains all 1s.

Changing the Log variable to 1 enables the su
logs the data.

The SineData array changes immediately, but the CosineD:

Select Calibration-Refresh Volatile Map (or pres
CosineData array is updated.

The Sine Data array may be used to examine the Sine val
copied and pasted into a spreadsheet for analysis.

If there is no need to edit the values offline (fa
are a good starting point for an adaptive algori
Display variable will suffice.

If, however, the values are best customized ba
variety of installations it will be used on, then t
variable is the one to use.

We are done with this example — you may clos

ITITTTL] e

New Eagle

Phone: 877.234.1410 support@neweagle.net www.heweagle.net

MotoHawk Resource Guide: Chapter 1 Intro - Page 20

Throttle Control Challenge

The following example uses a slider potentiometer and an
electronically controlled throttle assembly: . i
Pin Number Signal Name
Table 1 lists the signals and their corresponding connector pin 1 Motor-
numbers. 2 XDRG
The Slider pot should be connected to XDRP, XDRG, and 3 XDRP
ANIM.
4 Motor+
POT1 and POT2 should be connected to AN2M and AN3M
respectively. 5 POT2
Consult the datasheet for your module to determine the appropriate wire 6 POT1

number for each of the signals.

.)) Table 1: Electronic Throttle Connector Pinout
At the Simulink command line, use the motohawk_project

instruction to open a new project. Name it ThrottleControl.

Double-click on the Foreground block and delete the Controller
and Plant blocks.
From the MotoHawk Analog I/0 Blocks library, drag in a
motohawk_ain block. + ¢
. - — 1 —r— M
Select “Allow 1/0 pin to be calibrated from MotoTune,” and = - —a |
name the block ThrottlePedal. L= -] -
Select AN1M from the pull down and click on “Apply” then
“OK.”
Drag in a Gain block and a motohawk_probe block.
Wire the ThrottlePedal block to the Gain block and the Gain
block to the motohawk_probe block.
Set the Gain block Gain to 100/1023.
Name your probe SetPoint.
Press CTRL - D. Electronic Throttle/Slider Potentiometer Schematic

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net MotoHawk Resource Guide: Chapter 1 Intro - Page 21

In MATLAB 7.0, the following error message appears

H-H_l iaE o B = '\'—_'-.Hiﬂi L1 T ER
MATLAB 7.0 supports a fixed point data type called ufix16_engl9 which [T [AlefefanE MereTron Ep_g_mwﬂ
requires a separate license. Other versions of MATLAB will issue a data type T e ——
mis-match error. This is because MATLAB uses a default data type of double, SIS |t -J
while the data type for a particular resource is dependant on the hardware. 7 -
=

In this instance, the A/D on the 555 is 10 bits, which fits into a unit16. e
Other resources have the following data types:
Digital Inputs and Outputs are Boolean E.._'—_"; o =] —J——
Frequency Inputs and Outputs are uint32 (scaled by 0.01Hz)
Duty Cycle Inputs and Outputs are int16.
Go to the top level of your model, double-click on the Target

[; “ ; . ” T -1
Definition block and click on the “Floating Point Data Type =y
pull down. T T e
The choices are: single (32 bits)
double (64 bits) e =

et T -
—— [v e et e

s hr g

dlsabled F:‘I T T e tet e ey e i e
These determine the way that memory will be allocated during code
generation. The default is single (32 bits) and should not be changed ===
unless greater resolution is required or the target processor does not
support floating point operations.

Return to the Foreground level of your model and drag a Data
Type Conversion block in from the Signal Attributes library.
Place it between the ThrottlePedal block and the Gain block. NN,

[T | dtars Fran

Press CTRL - D again.

There should be no errors reported.

From the Format menu select Port/Signal Displays and check

Port Data Types.
The data type appears adjacent to each wire. This is a convenient way to
verify that your data types are consistent in your model.

Make copies of the analog input, data type conversion, gain,
and probe blocks.

Highlight them and select Format-Flip Block (or CTRL-).

Select AN2M for the analog input, name the probe Feedback.

Drag in a motohawk_pwm block from the Analog 1/0 Blocks
library and select H1 as the resource.

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net MotoHawk Resource Guide: Chapter 1 Intro - Page 22

Drag in a motohawk_calibration block. Name it ETC_ DMRE nes NI AmB e AR
Frequency and set the Default Value to 5000. e 9 P MeteTron Eaperein

To make a proportional control like the one shown, double-click —
on the summing node and change the list of signs to | +]- .

Copy and modify the gain block and data conversion blocks.
When you first wire in your blocks, the data type adjacent to each wire will =]_{:\';
indicate double (MATLAB's default), but when you press CTRL - D they are o sPa.

updated to indicate the appropriate data type.

This value represents the difference, or
error, between the Throttle Pedal Value
Press CTRL - B to build your model and use MotoTune to ; ==L e and the actual Throttle Pedal Position.

download it to the module. == { — e s

Operate the Throttle Pedal slider and observe the behavior.

This model is a simple proportional control. Realistically, a

more complex control is required. ‘—"fr._f}—jz,_l'—“f':f:_

Fault Detection on Throttle Pedal BT
The next model introduces rudimentary fault detection on the CILIT NG PO o e [T TIILT [0
Throttle Pedal Position sensor and adds an integrating term to ot Sletatid. Butermecop
the command signal. It also includes diagnostic probes and e -
calibratable Proportional and Integral gains. e il e
Modify your drawing to look like the one shown. 3y :‘_"_3"-:.;
Press CTRL - D to check your model. e I ey ey e ’—E
. i
Then build it using CTRL:B. — B el e o - [
Open a display and a calibration in MotoTune. Set up your = | / fg"' - . -
probes and adjust the ETC_Frequency value until the high e R — | -'-‘alr_:— T n—
pitched sound can no longer be heard. = = [T — r e
Set the Integral Gain to zero and increase the proportional gain S iy ey = e | "i’_{-_-.-:_
until the throttle plate exhibits ringing when operated. ‘ v £ 1™ “|
Open a chart and increase the Integral Gain until the traces for P T ==
SetPoint and Feedback come together. (Gl Gy e c—]
The Error trace should be zero. = = u‘*f-;:“] =] e

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net MotoHawk Resource Guide: Chapter 1 Intro - Page 23

. e e, P N

CHAPTER 2 : Faults

About Faults 1 ‘\ “re
MotoHawk Fault Theory of Operation 2 "em “a\. \uve

Fault Blocks 3 SVS .‘em ‘a\ ve

Fault Manager 3 SYS K\ &a

Fault Definition 4 5\

Set Fault GiC b This section covers the basics of faults within MotoHawk.
Fault Status 5

Clear All Faults 5 . . About Faults

raulte e Faults are used to indicate failures within a system.

Example 7-8

For instance, if a sensor becomes disconnected, the application can detect this out of range
condition and signal the issue via a fault.

Fault diagnosis usually accounts for 50-70% of the code within any production application.

In other words, when you have the control logic done but not the fault detection, you are only
about 1/3 to 1/2 done with your application. MotoHawk provides a nice set of blocks to help you
signal faults and take actions as a result of faults.

@0 0 0000000000000 0000000 0 e

© © 0 0 0 0 0 0000000000 00000000000 0000000000000 00000000 0000000000000 00 o

Faults are nothing more than signals that some logic has found an issue within the system.
Fault diagnosis and identification is a complex subject that changes based on the application.
However, you will find that all good applications at least diagnose sensor failure, and should diagnose
actuator failures if possible. Why? Because wiring harnesses fail, sensors fail, and actuators fail.

Ideally, your application will do three things well:

Fault Containment — the act of keeping a fault from propagating to other parts of the system.
Fault Identification — the act of determining, as precisely as possible, the source of the fault.

Fault Annunciation — the act of reporting the fault to someone who can fix it.

Fault Action — the act of adjusting system operation in response to the fault.

Some faults are easy to detect — like a signal being out of range. Others can be terribly difficult

— like a signal stuck in range. Unfortunately, MotoHawk does not help you with the containment or
identification problems. That is the job of the application designer. MotoHawk will however, allow you
to record the faults, help annunciate them and help interface to action code.

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net MotoHawk Resource Guide: Chapter 2 Faults - Page 1

MotoHawk Fault Theory of Oper— . _ . o .
MotoHawk allows you to route multiple faults to a single fault action. This is a powerful idiom that

MotoHawk contains a series of blocks that allow you to signal ~ will simplify the designer’s job. Because fault actions are independent of faults, there is no need to define
a fault, read the fault status, change the fault status, and take = various levels of seriousness to the faults. The seriousness is contained within the application.

fault actions.

The easiest way to think about this — you have fault signals For instance, an engine designer may design a fault that detects low oil pressure and an action that
and fault actions... is capable of shutting down the engine. He can then decide if low oil pressure is worthy of shutting
down the engine. Often times, this decision cannot be made at design time.

Fault signals are an indication that a fault has occurred.
You may be building an engine that can be installed in a trash truck and a fire truck. Shutting down

Fault Actions are what the application should do when a trash truck because of low oil pressure is probably very desirable so that the engine can be
various faults occur. repaired. However, most fire departments would just as soon pump water onto the fire until the
engine is reduced to a pile of molten metal rather than shut the engine down.

MotoHawk respects this and allows you to calibrate faults to fault actions, rather than requiring the routing
be set at design time. This allows a single code build to handle both of the example cases with just a
change in the calibration.

Faults also need to have filtering. MotoHawk faults provide an X out of Y test which, basically says that
the fault must be present X times out of Y samples to be declared active.

— Faults are considered “Suspected” whenever any of the Y number of samples have
detected the fault but the number is less than X.

— Faults are “Active” when at least X out of Y have occurred.
In addition to filtering, MotoHawk faults have some different behaviors. A Fault can be:

Disabled — meaning it will not signal a fault even if the X out of Y condition is satisfied.

Sticky — meaning that once set it will remain set until the next power down or until it is
explicitly cleared. This setting is handy for detecting transient or intermittent faults that
may appear and disappear before they can be observed in MotoTune.

Persistent — a fault that acts like the “Sticky” fault, in that it will remain set once the
fault conditions occur. But it will remain set across a power cycle. A persistent fault
once set will remain set until it is explicitly cleared.

Fault Actions can be initiated by one or more faults. Any given fault can drive up to four fault actions based
on various states of the fault (i.e. Suspected or Active). The fault action block will report a high Boolean
signal when any of the associated faults are set. The application designer is then responsible to define the
proper system response.

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net MotoHawk Resource Guide: Chapter 2 Faults - Page 2

FaultBlocks s MotoHawk

MotoHawk provides several blocks to define and interact Fault Management Blocks
with faults within your system.

Copyight 2005 MolsTren, he Al Fights Ressned,

These are located in the MotoHawk Library under Fault MotoHawk (RTW)

Management. Provides functionally tomanage a bi-packed faull data structure, Fault Manager Definition
toview and clear the status of faults from MotoTune,

Fault Manager B B L Storage:FLASH

: : - - Read Access: 1
This block can exist anywhere in your model. You will need Global M y
anager Definition
only one for the model. The storage for the fault manager 9 Write Access: 1
allows you to control where the fault calibration is stored. Wotabamk TV Clear Accass: 1
: Fault Manager Definiton
If set to FLASH — the faults can only be calibrated on a ———————
development module or offline. i i
A — Block Parameters: motohawk_fault_manager |
If set to EEPROM — the calibration can be adjusted on any ClisarAcss 1 — MotoHawk Fault Manager [mask] (irk]
module. This block defines the Faul Manager, and must exist once in each model
. " that contains Faul blocks
The access level refers to the security level required of the
i Code is generated to cache the faulks in a memonp-efficient mannes, and
MotoTune user to perform the action. Definition Status B hodeoe i cenmibtad s MofoTuina Lo gl and oo e teuts. |
The MotoTune. group string contro[s where the Fault calibration s ps :,'E';,']‘gﬁh " Fas Sk AL Itis 5t legal to use Fauik blocks without the Fault Manager, but without
will be shown in the MotoTune Calibration Tree. the definition block it has the sifect of removing &l Faull functionality.
al SHFAIEFal) R ab Copyright 2005 MotoTron, Inc &1 Rights Ressved
~ Patametess
| cwmaran Storsge
Read Access Lavel |1 _:1
Action Wite Access Level [} =]
Fault Adian: MyFaukAdion 3 Cloxr Access Level |1 =l
Motol une Group Shing
Clear Faults | Fauits'
S
Ik Hiwls (ATV
CearAlFauls 1] Cancel Help I Aoy i

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net MotoHawk Resource Guide: Chapter 2 Faults - Page 3

Fault Definition 0l |
>

This block defines a fault in your system. Faults must have
unigue names throughout the system.

Set Fault & Clear Fau

These blocks will set or clear a fault that has been defined
elsewhere.

The application is responsible for coordinating when these blocks run
— there is no coordination done by the Fault Manager.

Fault: Fault1
[25 of 50] (Enabled)

Hlock Parameters: motohawlk fault del - o

1 Moo vk, Foul Dafrdon [meak] fink)

This block delfines & Faull, which can be wewed bom MooT ure, 2nd may |
bavvw parvenal calbratable Faull Ackions aspocisted vwith il

?Eugmmm stabes arsocisbed with i Suspeched, Acthve,

Oocumed
1 Simpched. the inget bo the block i e, || Actve, the cunent [aul hee
wacended e oge: socaied wih ds behavion. A laull b Deoused 10
by eves branibionsd Fiom Acknee bo Inscinee, since procetsor ieset

1F tee it sigrenl i o, the Fault becomes Suspecied unbil the: counl
resaches ¥ ol of ' semples, when | becomes dictve. The Laull becomes
nactin again alter Y samples of (e inpul

i Stk [l pasisne Buctive bl esplicitly clsared hom MolaTune, o untd
shubdowen. A MloreSticky sl cnly shays Active whis the cound logic it
I,

Eachloult may doclare up 1o § Actions o be laken. accordng o oo of
e Achon Condibion

Copyrighl 2005 MabaTion, Inc. Al Rights Reserved

Paramatar
Faud Name

=
Wods [Enasied |
Fauky Samples (4]

[5
Tetal S amples (1]
[=a
Action 1
F
Action 1 Coniton [Plore) =]
Achon 2

|'-.
Action 3 Condibon [ane] =
hction 3

|'-.
Action 3 Convditon | Mone| =]
Action 4

|-
Action 4 Conditon |4 one| =]
W Usze uployded Mode /= /7 values hiom MotoTune

F Use ulosdsd Fauk Actions hom MotoTune

0k | Coreal e | sy |

’7} Set Fault: Fault1

3 Clear Fault: Fault1

Block Parameters: motohawk _Ffault_set B

£

— MatoH awk Fault Set [mazk] [lnk]-

This block sets a predefined Fault, which can be vigwed from MoloTune,
and may have several calibratable Fauk Actions associated wilh it

IF trve inpast signal is true, the faulk becomes Suspected untl the count
reaches X out of Y zamples, when it becomes Active. The lault becomes
inactive again after ' samples of falze input.

Copyight 2005 MotaTron, Inc. All Rights Resenved.

- Parameters

Fault Mame

[o]

Cancel Heilp Soply

Block Parameters: motohawk_single Fault clear i |

r~ MotoH awk. Fault Set [mazk] (lnk)

This block clears a predefined Fault, which can be viewed from
MotaT une, and may have several calibiatable Fault Achons associated
vaith it

If the input signal is true, the fault Wil be claared.

Copyright 2005 MotaTran, Ine. All Hights Resernved

i~ Parameters - — —
Fault Mame

Concel | Heb | sosb

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Resource Guide: Chapter 2 Faults -

Page 4

Fault Status

These blocks allow you to read the status of a single fault or

Fault Status: Fault1 A
Active "

a group of faults.

When reading multiple statuses, the output will be a vector
of boolean values corresponding to the fault list.

Clear All Faults
This block, when triggered will clear all of the faults.

If the fault conditions still exist, once the X of Y filters are
satisfied, the faults will re-activate.

Fault Statuses: A e

Active

r— MaotoH awk. Fault Status (mask] (ink]
This block refieves the curent Fault Status by name.

Block Parameters: motohawk_fault_statusi

The output may be one of the states Suspected, Active. or Ocowred, o

| Copyright 2005 MotaTran, Inc. All Rights Ressrved

 Parameters

Fault Mame
v [Faun]
MotoHawk (RTW) Fauk Status |Active

Clear All Faults

o]

Cocel | Heb | sy |

Block Parameters: motohawk fault_statuses £
— MotoH awlk Fault Statuses [mask] (ink)
Thiz block retneves the current Fault Statuses by name for 3 st of faults,

A helper function, motohawk_get_faults[syz], will get all of the faults n
moded sys.

The output may be one of the states Suspected, Active, or Do
all thres,

Copynght 2005 MotoTron, Inc, All Rights Reserved.

Parameters -
Faudt Hames [Cell array)

[motohawk ost laults(bdioal

Motohawk_get_faults(system:)
This is a utility function that will
retrieve all of the faults located in
the system and its children. Use
bdroot to find all faults within the
model. The fault list returned by
this function will be alphabetized.

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Resource Guide: Chapter 2 Faults - Page 5

This block defines a fault action.

The fault action name must be un
The action will become active whe
either via the design or via calibra
designer then needs to create the
when the fault action is active.

Phone: 877.234.1410 support@neweagle.net

www.heweagle.net

Fault Action: MyFaultAction

Block Parameters: motohawk_Ffault _action

~ MotoHawk Fault Action (mask] (link]

This block defines a Fault Action, which can be configured from
MotaTune to be output for any of the defined Faults.

ThwWWmiwdhmﬁmﬁmesm
Active, or Occurred,

Select which of mmumuuufum Al three state may
be cutput, for more comples behavior,

Copyright 2005 MotoTron, Inc. Al Rights Reserved.

~ Parameters

Action Name

[ok | cancel | beb | zopw |

New Eagle

MotoHawk Resource Guide: Chapter 2 Faults - Page 6

Example _ *For a larger view of drawing, open MotoHawk_Resource_Guide_11x17_drawings.pdf on the included training cd.

This example will demonstrate

the Fault Blocks.

Start with motohawk_

project(‘Faultl.’)

(PROPRETARY
AND CONFIDENTIL

THE INFOFRLATION CONTANED NTHES
DRGANG IS THE SOLE PROPERTY OF
WOTOTROMN, ANY REFROILCTIONN
PART W AS AWHDLE WITHOLT THE

CHF MO TG TRON

5 PRONBITED 2005

Mot oHGu kK
=

MotoTron Corporation

505 Mason Ropd, Daviosh, WL 58307
A BT 4 L B2 2T T

Dancrigiican:
Faulti
Foreground

Remove the existing contents
of the Foreground subsystem

Create the model as shown.

Build the model.

Run MotoTune, program the
module, and open a display or
open the FaultExample.dis file.

Faht Faum
B8 0l50] Desbied)

Faul Sk Faull turse
Al Faut
e ._.ii pullSls I

L L
SoFaul2 =0 Ll Faglt Faur2 Faut Satus Faul? . Faull Babs Faurz (e
5 ['—"L 5 0t50] Enabled) L P """‘—""ﬁ P I L Sanpades 5"‘—“‘* e I
I SeFauld =0 Logseen Fawit Faull Faul Sk Faull e
o 4_.hl 25 of 50] ESacka) L Ach .M._.pi FaukX s I
SoFauld =0 Logseen Faslt Fauls Faul Sk Faul e
Pk . {25 150] Pessssund e .q,._..* FaubdSuls I
ut L ML L]
CeaFaul =10 e T —
L P ol St s
1:Faultl
ot A —.i""-” A auRalms I
4 Fasubd
Mo
——|
L Fauit-Acton - Ackon | _W“' Adion) I
L FaullAcion: Acson -._.-w" =] |

oy

L‘ FaulAdion: Adond

Phone: 877.234.1410

support@eneweagle.net

www.neweagle.net

MotoHawk Resource Guide: Chapter 2 Faults - Page 7

(exampl

Notice in MotoTune display e
there is a category for Faults
contains the display variables

Active Fa
Qccurred Faults
Suspected Faults

command that wil

Also, for every Action there is
display variable that will tell y:
the faults that are causing th
action.

All of the displays are marqu
displays, that will roll through
and display the fault names.

Open a calibration and notic
category in the Calibration Ex
Fault Manager is located her:
Open it up.

The fault manager contains fi
that can be set in the Simulin
Definition Block. They are fou
and can be adjusted at run i

There is also an extra field, “
will allow you to force the faul
without the input conditions

Note how the calibration has
adjusted to route some of the
particular actions.

New Eagle’

*For a larger view of drawing, open MotoHawk_Resource_Guide_11x17_drawings.pdf on the included training cd.

£3 MotoTune [Eric Holloway] - Fault1_000_000.cal

splin” 2 FanltManager |
& Displ —
. :: ::':: ' |ActiveFaults Fault1 Action1_Reason (None)
= @ Action Reascns * |OccurredFaults Fault2 Action2_Reason (None)
L] Acenl_Resson * |suspectedFaults (None) Action3_Reason (None)
o ACBoN2_Redrson —
(3 Acton3_Reason ‘ |FaultCommand Waiting for Command
 ActiveSats 5 |SetFaultt 0 FaultiStatus Active
L] &aﬂon;_m;md 5 |SetFault2 0 Fault2Status Fault2Suspected 0
31 \'u‘::;::e(ﬁ:;:; i SetFault3 0 Fault3Status
® () System 7 |SetFaultd 0 FaultdStatus
4 |ClearFaultd [0 | AlIFaultStatuses 0 1 2
10 0 Active -
"
12
< \sheert / 1<

Action 1 Condition

Mode Test | Faulty Samples (X) | Total Samples (Y) | Action 1
25

Fault! |Disabled 50 (None) {None)
: Fault2 |Enabled 50 Actiont Actre
g ®Faultl_000_000.cal on [PCM-1] ~ [[Fault3 |Stcky 0 Acton! Actve
) Fadts Faultd |Persistent 50 Action? Actve
(¥] FautManager <
= Syste
@@ System o [[Ceonected (POM-1] |
|Ready

Phone: 877.234.1410 support@eneweagle.net

www.neweagle.net

MotoHawk Resource Guide: Chapter 2 Faults - Page 8

Y P N L ‘
o ¥ m s N ¥ L~ New Eagle
" ~ \1 57 - ciJN .

CHAPTER 3 : CAN

About CAN 1
Introduction 2
CAN Bus Basics 2
Payloads 3 \
Protocols 3 g%’\
What should a protocol specify? 4 g“oo\:‘ *
Examples of Protocols 4 e%?\o
MotoHawk CAN Theory of Operation 4 "% 0\? _
Using CANKing to Observe the Bus 6 "0 0" _ .Sendmg and
Basic CAN Blocks 8 $, recelvmg messages

B \5 . via a.CAN por.t is incredibly
CAN Channel Definition 8 6 simple. It is far easier to send or
CAN Transmit Raw 9 G“ receive a message via CAN thanitis a
CAN Receive Raw 9 RS232. However, there are a couple of issues
Slot Properties 10 ’Fhat can make it seem dagnting — especially when

talking about CAN protocols like J1939 or SmartCraft.

Slot Receive Trigger 10
Example 11
Advanced CAN Blocks 13 - About CAN
Payload Bit Numbering 13 The CAN standard was invented by Bosch in the early 1990’s to facilitate the communication
Standard ID Bit Numbering 13 of data between devices in a vehicle. CAN literally means Controller Area Network.
Extended ID Bit Numbering 13 All MotoTron Control Solutions modules are compatible with the current standard — CAN 2.0B.
Message Definition Structure 14 rl\]/lqgi‘; o;sotuhrrg?dules have at least one CAN port, while a few have as
Advanced Example 16

All of our drive-by-wire marine applications require two busses for reliability and redundancy,

Recommended Usage of CAN Message Receive Blocks 18 . . .
so many modules are equipped with a pair of busses.

On to the basics of what makes a CAN bus.

ooo

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net MotoHawk Resource Guide: Chapter 3 CAN - Page 1

Introduction

First, a CAN bus requires at least two participants in order to be a bus. The physical connection
between devices is a 2 wire cable. The wires are often labeled CAN-H and CAN-L. There must be a 120

This section covers the basics of the CAN databus and how to use ohm resistor between CAN-H and CAN-L somewhere on the bus called a terminator. The terminator resistor

the MotoHawk facilities to interface your module to a CAN bus.

CAN Bus Basics

can be placed physically anywhere in the bus, but ideally is located at one end or the other. You can have
more than one terminator, but remember that too many cause the bus to stop working.

CAN bits are transmitted across the bus as either dominant or recessive. This means that a
dominant bit (a 0) will win over a recessive bit (a 1). All of the transceivers on the bus must be operating
at the same bit rate (aka the baud rate.) All of the transceivers on the bus synchronize to one another by
detecting the edges between 1s and Os. Luckily, the transceivers do much of the hard work of transmitting
and receiving messages. The software needs only load messages to be sent and react to incoming
messages. The transceivers make sure that a message gets out on the bus if possible. Commonly, busses
are operated at 250K baud but can run as fast as 1M baud. The length of the bus is directly related to how
fast you can run the bus. For reliable communications, the maximum range at 250K baud is 100 feet; at
1M baud it is 30 feet.

All CAN messages are comprised of:

- An ID of either 11 bits (aka a standard ID) or 29 bits (aka an extended ID),

- A Data Length Field saying how many payload bytes there are. This number can be from O to 8, and -

A payload of O to 8 bytes. Notice that the payload can change sizes. Yes, a perfectly valid message can
contain no payload at all. You might ask, why you would ever transmit a message with no data? Usually to
indicate that a module is alive by sending a heartbeat to other modules in the system or to represent the
occurrence of an event. Notice as well that IDs can be of two different types. Is it permissible to have both
types on the bus at the same time? Absolutely. The bus will perform just fine with both types of IDs and
variable length payloads running across it. Also, messages with IDs of the same value but different type are
considered totally different messages.

So, how are the inevitable bus collisions (times when two modules want to transmit at the same
time) handled in CAN? Very nicely.

Remember that all transceivers are synchronized. The two transmitting modules will start clocking out
their ID bits at the same time starting with the most significant bit. As soon as the ID bits differ, the device
that is transmitting the O wins the bus (because Os are dominant) and continues clocking its bits out. The
device with the 1 in the ID bit, automatically detects that it lost the bus and stops trying to transmit, and it
will automatically wait until the next transmission slot to try again.

So, this brings us to a couple of rules:

Lower ID values have higher priority on the bus

(and standard IDs are higher priority than extended IDs)
No two devices can transmit the same ID.

The first rule is fairly obvious. Os are dominant, so lower IDs will make it on the bus first. The fact that
standard IDs are higher priority than extended is caused by the transmitting of a 1-in-1 of the early
messaged header bits to indicate that the following ID is extended.

Phone: 877.234.1410

supporteneweagle.net

www.neweagle.net

MotoHawk Resource Guide: Chapter 3 CAN

- Page 2

The second rule is not as obvious, but will bite you. If two modules tried to send the same ID at the same
time, neither would know that it did not win the bus. The failure would not occur until they had a different
bit in the payload. Unfortunately, each module will only be informed that its message failed a parity test
(due to the payload bits being clobbered). Each module will then dutifully retry to transmit. Since they are
synchronized, they will once again clobber each other. So, never, ever have two modules potentially sending
the same ID. Of course, never is a strong word. And, you will see that some protocols actually will break
this rule to do address claiming — but more on that later.

Payloads _ Recall that payloads can have between 0 and 8 bytes of data.

Those 8 bytes can mean anything you want them to mean. The CAN 2.0B specification does not have an
opinion about the contents of the payload. Of course, choosing IDs and defining payload contents can be a
daunting task. If you own the entire bus design, you can simply choose IDs and data packing. However, if
you need to coordinate bus usage, then a protocol needs to be chosen so that IDs are unique and multiple
developers can interface to one another. Luckily for you, there are plenty of protocols to choose from like
J1939, GMLan, SmartCraft, CANopen, etc. You can also run multiple protocols at the same time across the
bus — just make sure the IDs do not clash and there is sufficient bandwidth and you are good to go.

A frequent question is... How much data can a CAN bus transfer?

There is plenty of sophisticated math can run. Or, you can remember that the maximum
performance is about:

— 2000 messages per second at 250K Baud (or 16000 bytes per second of payload.)
— 4000 messages per second at 500K Baud.
— 8000 messages per second at 1000K Baud.

Good network design requires that you plan for no greater than 70% bus utilization or about 1400
messages per second at 250K. Protocols will often require you to pace messages at a minimum
interval between messages so that the instantaneous message rate adheres to these limits. For
instance, J1939 paces messages at 50 milliseconds for large data transfers. In other words, they are
limiting a block transfer to about 1% (1/0.05/2000) of the available bandwidth.

Protocols _ Protocols are where CAN gets thorny. Because CAN has a limited number of ID bits and only 8 bytes of

payload, defining ways to transport all types of data can be difficult. Often times we hear questions like,
“Do you support CAN?” The answer is, of course, yes. What they are probably asking is, “Do you support
[something like] J1939 running across CAN?” The answer is maybe.

We usually consider protocols to be application specific. That is, the application is responsible for
implementing the protocol. MotoHawk, Control Core, and Woodward’s MotoTron Control Solutions hardware
provide all of the necessary infrastructure to implement protocols, but it is rare for protocols to be
implemented in these layers. The exception to this is the reprogramming protocol for the module via CAN.
The boot loader needs to communicate with MotoTune to reprogram a module. Since the application is not
running during reprogramming, the boot loader then becomes responsible for the reprogramming protocol.

Phone: 877.234.1410

support@eneweagle.net

www.neweagle.net

MotoHawk Resource Guide: Chapter 3 CAN

- Page 3

What should a protocol SpGCI_ Most protocol specifications will define Message Definitions which include:
— ID (including whether it is extended or standard)

— A description of any of the meaning of any ID bits

— A description of any ID bits that are “don’t care,” commonly called the mask
— Frequency of the message, or the event that will cause it to transmit
— The device responsible for transmitting the message

— The expected number of bytes in the payload

— The contents of the payload

— The size of each content item in bits

— The location of each content item in the payload

— The data type of each of the content items

— The byte packing order of each of the content items

— Atranslation of each content item into “real world” units

— If the protocol has states, then a list of all states and transitions

Unfortunately, 95% of all protocol specifications are incomplete because they assume certain facts (like byte
order) without specifying them. The missing information is often the reason that you cannot connect your
application to an existing CAN network without problems.

J1939 : Recommended Practice for a Serial Control and Communications Vehicle Network
This is the network found on many heavy duty trucks. Communication is defined for a very large
number of devices like engines, transmissions, dashes, anti-lock brakes, etc.

.

Examples of Protocols _

NMEA2000 : This is the protocol published for marine vessels. The protocol is similar to J1939.
SmartCraft : This is the drive-by-wire protocol on Mercury Marine powered vessels.
GMLan : This is the protocol running in your favorite Chevy.

CCP : This is the CAN calibration protocol used by many controllers for calibration and service tool interaction.

MotoHawk CAN Theory of OP_ - When transmitting, all messages are transmitted via a single hardware buffer...

_ . . (usually buffer 0) from a software queue. As the application executes, each message that is to be transmitted
MotoHawk provides several blocks to make interfacing is loaded into the software queue. The OS then monitors the buffer and transmits messages from the queue as
to any CAN bus and protocol relatively easy. quickly as possible.

(Remember at 250K baud, it takes about 500 ns per message to transmit if the bus is not otherwise busy.)

Two different forms of transmit blocks are available.

One will transmit a raw message — meaning a message with the ID and payload computed by another part of the
application. The other block will form the message from individual signals being fed to the block and a message
specification. The latter block is generally used for broadcast, fixed content messages. The former is generally
used to handle protocols in which the payload changes based on the state of the protocol.

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net MotoHawk Resource Guide: Chapter 3 CAN - Page 4

(MotoHawk CAN theory of operation continued)

Receiving of messages...

is conceptually simple, but terribly complex because the CAN
hardware does not provide much assistance. MotoHawk has
abstracted much of the complexity away by automatically
generating a sophisticated software message dispatcher. As
you create message receive blocks, each block will require a
message ID and a message ID Mask that describe the message
ID that you want to receive. The ID mask is simply

a description of which bits of the ID must match in order for the
message to be accepted.

For instance, if the Message ID is set to Ox7ff and the
ID Mask is set to 0x7f0, then all messages from 0x7f0,
0x7f1, through Ox7ff will be received by this block.

At code generation time, the entire model is surveyed for all
of the various IDs and masks and a software dispatcher is
generated to handle this combination. The dispatcher will
adjust the hardware to filter as many messages as possible
from the bus and then filter the rest in software so that only
the desired messages are passed up to the application.

Each CAN receive block can optionally provide a slot name
that allows other blocks to access and adjust the defined
slot.

© © 0 0 0 0 0 0 0 0 0000000000 000000000000 0000000000000 0000000000000 000000000000

. . The way to think about this mechanism is like a post office...

Your slot is where you expect to get mail (or messages) destined for you.

The mail sorter (or the software dispatcher) grabs all of the mail and sorts it into various slots.
Sometimes you may want to adjust the rules for your slot; maybe you are going on vacation, so that
the mailman changes what shows up in your slot.

For MotoHawk CAN receive blocks, you can create a slot by name that can be adjusted
elsewhere in your application. In the previous example, we decided at design time that we needed
to receive all messages between 0x7f0 and Ox7ff. But perhaps at run time some logic decides that
you really only need to receive 0x7F1, because the module now knows what engine it is installed on.
There is a slot properties block that allows you to adjust the slot to tighten the ID mask — so only
message 0x7F1 shows up at the receive block.

In other words, the mailman will deliver all of the mail that you requested when the code
was built. But you have the ability to ask him to throw away some of the messages prior to
placing them in your slot.

There is also a slot trigger block that can be used to notify that a slot has received a message via a
function call trigger. In other words, the mailman will ring your doorbell when he puts mail in your slot.

Just to make matters more interesting, you may want to censor some of your mail...

so that only messages with certain contents are placed in your slot. Each of the CAN receive blocks
has the ability to filter based on the payload contents via a payload value and a payload mask set of
values. Like the ID, the payload mask simply indicates which bits of the received payload must match
the given payload value.

For instance, say that you want to receive messages 0x7f1 whenever the first byte of its payload is
exactly Ox8f and when the last bit of the payload is set. The payload value would be set to [0x8f 0x00
0x00 0x00 0x00 0x00 0x00 0x01] and the payload mask would be set to [Oxff 0x00 0x00 0x00 0x00
0x00 0x00 0x01.]

In other words, the first byte must match all 8 bits and the last bit must be set in order for this
message to be put into this particular slot. So now, the mailman reads our mail for us and obeys our
content requirements before shoving the mail into the slot. As with IDs, the payload requirements can
be adjusted at run time via the slot properties block.

Like the transmit blocks, there are two flavors of receive blocks, one for raw messages and one that
will unpack the payload and the ID into their respective data fields, providing them as signals to the
rest of the application.

© © © 0 0 0 0 00000000 000000000000 0000000000000 0000000000000 0000000000000 0 00 O

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Resource Guide: Chapter 3 CAN - Page 5

Using CANKing to Observe the Bus |

Your MotoHawk kit included an interface for your PC that allows
the PC to communicate to two CAN ports via the USB interface.
These devices are made by Kvaser (www.kvaser.com.)

Kvaser publishes a free CAN tool, CANKing, which allows you to observe the
bus and even send messages. You will need this tool routinely. Download
CANKing from our website at http://mcs.woodward.com/.

Initially running CANKing, you will get dire warnings about
safety the first time you run the program. Acknowledge their
warning and check the box to prevent the warning in the future.

CANKing will launch with the following window

CANEIng Tor Windows

[Creste s Mew Project Using

Vo |
& - |
X Corcel
o ? e
qr
e
Rherrd Lgars
The quickect vy ko
é T Ogen an Exiting Progect sk b b on &
Termqlate

X

[zl
Sarciard |
| o
€ % > § i
W v e 2 X o |
o
T
ChMbun
S
e R
fex CAH
Erwgdom

Choose “Template” to start a new project.
Choose “CAN Kingdom Basic” from the templates dialog.

You will then have several windows scattered about your
desktop.

First, look at the “CAN Controller” window. Choose the “Bus
Parameters” tab. Choose the channel that you want (Channel
0 is the typical choice for the MotoHawk kits.)

Set the Bus speed to 250 Kbits/s.

Switch to the “Bus Statistics” Tab and press the “Go On Bus”
button.

If there is traffic on the bus, the “Bus Load” bar will give you an idea of
how much bandwidth is being consumed. If the “Error Passive™ indicator
illuminates, there are 3 possible reasons:

No bus terminator

Incorrect BAUDrate -
No other modules on the bus (because the modules
are not operating or there is a wiring problem.)

Just because there is a green light for “On Bus” does not mean that the

bus is actually connected properly. An “Error Passive” will not occur until

a message is sent from CANKing which cannot reach a receiver, or a bad
message is received. If nothing is received and nothing is sent, then CANKing
stays in the “On Bus” state, which can be confusing.

IMPORTANT : Uncheck the Exclusive box or MotoTune will not be able to communicate

to the module while CANKing is running.

Unfortunately, this setting is not saved in the CANKing project file so you will need to browse to
this window and uncheck the Exclusive box each time you run the program — even if you reopen a
saved project rather than start again from a Template.

=10 x|
Bus Statistics Bus Parameters. | Hpw Filters |
CAN Channet [USBcan IT #0 (Channel 0) =l
I Exchssive
BusSpeed; [EEENED) kbis
SampingPoint: 5~ 1:“!'
ST ? Suggest...

[cancontroter —————— TRTET
Bus Statistics | pus Parameters | W Fiters |
[Bus Load
L
Tokal Per Second (0 Ovarrun
RXmessages: O [1]
Témessages: O 1]
Error Frames: 0 o quaa
Bus Parametess
Channel: Virbual #0 (Channel 0)

Settings: 250,000 kbt /s
Bit timing: Q=8, 51=6, 52=2, SP=7S5.0%, STW=2

@ OnBus
) Error Passive
" OFf Bus

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Resource Guide: Chapter 3 CAN - Page 6

Open the Messages menu and select the Universal page to get
a window that will allow you to test transmission of messages.

Transmit anything and you will either see the state “Error
Passive” or the message will appear in the “Output Window."

To display the messages in a useful form, find the “Select
Formatters” window, select the “Standard Text Format” in the
“Active Formatters in Order of Execution” list, and press the
“Options” button.

The window “Text Formatter Options” will appear

Choose the setting shown.

These settings will cause the data to be displayed as shown —

A handy option in the “Output Window” is available via the right click
mouse button. This will fix the positions of the messages into lines of
the display rather than showing the bus trace.

Select Formatters o [=] B

Available Formatters;

Standard Text Formak
Interpret King's Pages
Simple Alarm

Pass Filker

=
jil

Active Formatters in Order of Execution:

1 b4
Dicwan Options Bemove

" Qctal

" Decimal

' Hexadecimal
" Use Default

Text Formatter Options EI

“Miscellaneous—
¥ Delta Times

[Mumeric Base

o oK

=T
A s S AN A T Time Dir
X Cancel I 03 04 05 06 07 0.015 B af
03 04 05 06 07 0.015 B
07FF 8 00 OL 0z 03 04 05 06 07 0.015 B
07FF 8 00 OL OZ 03 04 05 06 07 0.015 B
07FF 8 00 OL OZ 03 04 05 06 07 0.015 B
07FF 8 00 OL 0z 03 04 05 06 07 0.015 B
07FF 8 00 OL 02 03 04 05 06 07 0.015 B
07FF 8 00 OL 02 03 04 05 06 07 0.015 B
07FF & 00 0L 02 03 04 05 06 07 0.015 B
07FF & 00 0L OZ 03 04 05 06 07 0.015 B
07FF 8 00 OL 0Z 03 04 05 06 07 0.015 B
07FF 8 00 OL 0Z 03 04 05 06 07 0.015 B
07FF 8 00 OL O 03 04 05 06 07 0.015 B
07FF & 00 0L 02 0% O4 O5 06 07 0.015 B
07FF & 00 0L 02 03 04 05 06 07 0.015 B
O7FF 8 00 OL 0Z 03 04 05 06 07 c.us k|
07FF 8 00 OL 02 03 04 05 06 07 0.015 B |
4] | »
—

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Resource Guide: Chapter 3 CAN - Page 7

Basic CAN Blocks —

MotoHawk provides a number of different CAN blocks that you
will need to use for different circumstances.

The most important block is the CAN definition block

that will set up a channel’s BAUD rate, configure the transmit
queue size, and allow the installation of the MotoTune protocol.
This block must exist in order for any CAN transmission or
reception to take place.

The next two basic blocks are the “CAN Send Raw” and the
“CAN Receive Raw” blocks. These blocks simply transmit or
receive messages without any payload manipulation.

CAN Channel Definiton

This block can exist anywhere in your model.
You will need one for each CAN channel.

Bit Timing sets the bus speed or baud rate.
Transmit queue size defines the size of the transmit queue.

MotoTune can be automatically installed along with defining
the City ID and calibration details for the City ID.

City IDs : The City ID is a MotoTune protocol value that
essentially identifies the device. City ID 11 (OxOb) is the
default for all of our modules. City ID 2 (0x02) is the ID
for MotoTune. If you monitor the can bus while MotoTune
is active, you will see extended message IDSs like
0x00000b02 and 0x0000020b. The MotoTune Protocol
uses a scheme where messages are transmitted

with IDs of the form 0x0000DDSS where DD is the
Destination City ID and SS is the Source City ID. You
can simultaneously MotoTune to several modules. Each
module must have a different City ID.

MotoHawk CAN Definition

Bus: CAN 1
Bit Timing: 250 kbaud
T Queuna: 16 messages

MotoTune Protocol Enabled
City ID: 0x0B (PCM-1)

I—mmm ﬂmﬂd‘mlmﬁl...-..
CAM Revowce pelects which bus ba intisize. CAM_1 it avalable on mosl madues,

best CAN_T and CAN_3 are crly avadabis on soms. Pleass chech the datashesi for
thes chestited miosdhuls.

Bl Tieving alowes & peazat Baud rabe bo be selacted, of leis uter-dalinad alirbites ba
e B0 mstup thes AN baead rate.
1 oe=chesirened b rte i1 sdacind, the Bellowdng fisids may be filed i
- Prescaler
Hmsw‘l.ﬂmuswz
- Regyrichoorization Jump Width
Thas# are spechic 1o the CAN hadware

Copyright 2005 MeloTion. Inc. Al Rigkts Retarvad.

B,

CE T e R - |
Bt Timing [250 kb =1
Trsrumi Queus Se

3

¥ Iretall MokoT ure Protocsd

CitplD
[rexiiecrer)

Citg 1D Access Lavel] 4 =l

MotoT ure Gioup Sting
[Sipatern | Spibemm Coniig | Commurication Config

G | ges | g | s

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Resource Guide: Chapter 3 CAN - Page 8

CAN Transmit Raw____
H 0 Typs Jebdel, axkei] baal)

MotoHawk Send CAN Raw
This block can have multiple instances within your model. :

¥ 0 11248 o I9-BiL. winEXT) Busi CAN 1
The bus that you want to transmit on and the interval of L msamely e
transmission are defined. oLongth godLuimm S 2 S Block Parasilurs: Ritid EARIN =
— Mgl e CAN Plagasve jmich] fink)
The inputs to the block are the ID and its type, the length of T — Peceivan n AN mass g wihout ncasching tha pagicad
the data to send and the data itself. [P [ST Sp——

0 Ty Tha type of ©a memssage 1D [lerdard o eslended]

I Thes measage D b get.

10 W, Ther vk, bip ity b B 1D, g ity ol 0 | vt ik
oty

Data (0-8 bytes uint8): This block is designed to

take a vector on the Data port of any size of up to _
8 bytes. If you feed the port with a vector of only L] sink Block Parameters: Send CAN Raw
3 bytes, but set the Length port to be 8, then the PN) LAY e] i ; Fagoad Ve The vabe of he Fagd when the Payliad Mask s st

A A Trarmmmits vaw CAN message onlo the given phyicsl CAN bus, ok i e ol -
block will pad the extra bytes with the value 0. Fasbed ik Jow rentus il o i Sasubed i nade

vt o bt s o 1
Periodic Interval [ms]: If this value is set to -1, then the Fine e e e T
message will be sent every time this block is executed. i“"“"f‘“"‘ e e ot ontle S ¥t s v
If the value is set to a positive value, then the block will 10010 bk Poyioae. ard Pagtond Mank ok
attempt to transmit the message at the requested rate. IP:""“ RO D) 17 B) SeeDusiaebu fssontacor
However, this check is only done whenever the block avitte wod 0 b, U oo tho ket
is executed. So, if the block is running at 5 ms and)] T ol ol f the massages o ol the Dusas.
the Periodic Interval is set to 12 ms, you will see the - — e — Shm g o Poat. This ot el et sy b by
message on the bus at a 15 ms period. iy ey Tt bt

Copgpighl 3005 MainTran, Ine. Al Rights Ressrved

CAN Receive Raw_— s | =
MotoHawk Read CAN Raw bl
This block can have multiple instances in a model. If the slot 1D Type Qwd=0, sxtei]. booh) b L]
name is defined, it must be unique. phuar CA) — ottt e
Gusus Sizer 0 1
The parameters define the CAN bus, message ID, ID mask, ID Typs: Standa: P me
Payload and Payload Mask, along with the receive Queue 5 e Owas
size and the slot name. A data available port (1 whenever the Dabs (08 Bites, uint®) [rexcecmitr;
queue has any messages) and an Age Count port (increments = E"‘""‘""
whenever a message is not available and resets when a Prbad Mask
message is available.) 7
Do Se
Masks: Masks define which bits must match. A bit value P
of 1 within a mask means that the corresponding bit in :;',""
the ID or payload must match the incoming message I Sheom Dinin Akl P
to be received by this block. A bit value of 0 in a mask ¥ Shom fge Count P
positions means that you do not care what value is in
that position. fred | b |

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net MotoHawk Resource Guide: Chapter 3 CAN - Page 9

Slot Properties_

This block can have multiple instances in a model.

The slot name is used to match to the slot defined in the
receive block. The choice of adjusting ether the ID filter or the
Payload filter is set here.

Remember that slots can only be tightened, so only mask bits that were O in
the corresponding receive block can now be set to 1.

Usually this block is placed in a triggered subsystem, so that the slot
properties are adjusted only on some conditions — such as at startup
or on change of some state.

#10 Valua fuint¥l)

MotoHawk CAN Receive
Slot Properties

{10 bhaak inEdd)

Blat: ExRaw

wPayiend Valus juints, § byles Filter ID amd Payload

HPariond Mask {uinB, § byten)
S ———————————

=) sink Block Parameters: CAN Receive Slot Properties x|
MoloH vk, Send DAN R [matk] fire]
Azt & CAM 1ecaive tiol propaities &l mum lime

Slot Hame: The name o the skt to adust wiich should
malch & thol name defined in & Receve block

Uz ID Filtee. Achust the value of the 1D used to fler the messages.
Ulpa Pagload Fites: Adjust the valus of the Pagioad umed o filter the message.
Cegpmpht 2008 MoteTion, Inc. Al Fughts Reserced

Potamabars
Siot Nwne

Slot Receive Trigger 00

This block provides a function call trigger whenever the
specified slot receives a message.

This trigger is high priority and will interrupt any other
executing periodic task.

MotoHawk CAN Receive
Slot Trigger

Slot: RxRaw
————————

i)

Triggered
Subsystem

¥ U 1D Fitew
F Upe Payioad Fies

t]'_:-:rurl:e Block Parameters: CAN Receive Slot Trigge il
~MotoH 2wk CAN Recetva Tngger [mask] [ink)
Triggers whenever & CAN message is isceived on the given Skt

Copimght 2005 MoloTron, Inc. A0 Rightz Resened
Parameters

Shot
| Rz

v |iAllow placement of tigges inside another biggered subsysiem|

[« |

Lancel Help

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Resource Guide: Chapter 3 CAN - Page 10

Example - s

This example will demonstrate the basic CAN blocks.

Start with mOtOhaWk—prOJeCt Canl. *For a larger view of drawing, open MotoHawk_Resource_Guide_11x17_drawings.pdf on the included training cd.

Remove the existing contents of the Foreground subsystem. [Mot oH gk MotoTron Corporation
Create the model as shown — Build the model. o e e comt . —
e o
Run MotoTune, program the module, and open a display. T =
Run CANKing. st AN et C R ===
L
Right-click on the CANKing output window and select e
“Fixed Positions”. oy
In your MotoTune display — change the formatting of — _ —— S |
RX_slotID, RX_slotiIDmask, RX_ID, and TX_ID to display hex. CoN e e sk Sand G e Mottt Rsd CAN iw o —
e . N s ~
. =i S e et N |
D S R h'h::';:' 1:#: : : : : : : : ot 8 b | e, D
e Motsam CAN Besaivn
el nn o HdT - s P R
u—rm:‘::uuu: - R — :::..- .n:“..':lp...n..u
e, Y immlemiin

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net MotoHawk Resource Guide: Chapter 3 CAN - Page 11

(example continued)

Notice in CANKing that the message Ox6ff is being transmitted fdwon Fig fam BoodafuedeoofioibiadoiD? ASCHE Tine bix
every 20 ms. m::: - :: R L T ::::

In CanKing, transmit a message on address $7f0
with any data.

.-

o i 0,003 B

Universal page E X

You should see the data in your MotoTune display and the
Rx_Age value should reset and start counting from O.

Adjust the slot ID and mask as well as the payload values to
see how the messages are affected.

In CANKing, a value starting with $, like $7F0, means that the value is in
hexadecimal rather than decimal.

Ending the ID value with an x, like $7fOx, would mean make the ID extended
rather than standard.

The individual bytes of the payload may also be set using the $ notation
for hexadecimal.

DLC is the number of bytes to transmit in the payload.

CAN Envelope: [§7F0

Qe 1 g send :
: tned s Lned [0

Line 1 E Line 5 Fi

tnez [0 neg [0

tineg [0

ay
= ¥ Display1* on [POM-1]
=3 Cani

 Calibration

E1 MotoTune [Eric Holloway] - (My Display]

(3 Rx_Data
Ore D

= Rx_IDtype
J P _Len

) T¥_Data
M TX_ID

¥ T_IDtype

€ »

[Peacy

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Resource Guide: Chapter 3 CAN - Page 12

Advanced CAN Blocks — The payloads contained within CAN messages often need to be packed or unpacked into their
constituents for use by the rest of the model. MotoHawk provides a transmit and a receive block that

incorporates the packing and unpacking of data elements into the messages. Additionally for transmission of
messages, the block can pack multiple messages simultaneously and place them onto the bus at a specified

" . period for the message group, as well as an inter-message pacing interval to conserve bus bandwidth.
Payload Bit Numbering ¢ _ o
Each of these blocks requires a message definition in order to properly pack or unpack the data.

Critical to the definition of messages is the location of the The message definition is nothing more than a MATLAB structure containing specific fields which we will
least significant bit within the possible payload positions. cover below. In addition to unpacking the payload, it is also possible to unpack the ID fields. This becomes
important for protocols, like J1939, where the bottom byte of the ID is the source address of the module
transmitting the message. As with the Can Read Raw block, all of the ID mask and payload mask details
still apply.

For transmitting CAN messages — setting the payload mask will cause the bits that are set to precisely
have the value set in the payload value, regardless of the value of any fields that might be defined on those
bits. This allows you to set fixed elements of the payload to a value without needing to define fields for

You do NOT necessarily use the bit furthest to the right, which would be the | those values.

positions. MotoHawk defines the bit numbering as shown to the right. This
bit numbering is different than most protocol specifications.

MotoHawk defines the bit numbering as shown to the
right. This bit numbering is different than most protocol
specifications.

You ALWAYS specify the location using the LSB of the field, regardless
of the byte packing order.

An m-file, motohawk_can_example, is provided with MotoHawk that defines a proper
Matlab structure for defining a MotoHawk CAN message. We recommend copying this

. - file and creating new CAN message definitions using the supplied structure as a template.
Standard ID Bit Numbering | g g & i

Like payloads, IDs can be packed or unpacked.
For standard IDs, the bit number is defined as shown.

Extended ID Bit Numbering | _____

= E T T T = T Taalkrd

For extended IDs, the bit numbering is defined as shown.

10] o] 8] 7] & s[4] a3l 2[1] o

28] 27] 28] 25] 24] 23] 2] 21] 20 18] 18] 7] 18] 15] 14] 13]12] 11] 0] o] 8] 7] e s] 4] 3[2] 1] o

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net MotoHawk Resource Guide: Chapter 3 CAN

- Page 13

Message Definition Structure

.name - name displayed on block (default: empty string)
Motohawk_can_example.m contains the details of the .description - brief text used to document the message (default: empty string)
structure format needed to define a message. .protocol - name of the protocol used (default: empty string)
.module - name of the source module (default: empty string)
.channel - number of the source CAN channel (default: 1)

*** CAN ID setup ***

.id - may be either 11 or 29 bits (if undefined, uses .idinherit = 1)

.idext - either ‘'STANDARD’ (11-bit) or ‘EXTENDED’ (29-bit) (if undefined, uses .idinherit = 1)
.idmask - indicates which bits are relevant for a receive slot (default: Oxffffffff)

.idinherit - when set to 1, causes the message to use the ID of (default: 0)

the previous message in a list of messages (only applies for transmit messages)

.idcontent{} - bit fields within message ID, as described below. (optional)
Describes individual fields within the ID.
May be undefined or empty, if no ID content is defined.

* k)

*** transmit interval, message size, and contents

.interval - period in milliseconds, or -1 if sent asynchronously (default: -1)

.payload_size - payload size may be from O to 8 bytes. (default: 8)
transmit: exact number of bytes to send.
receive: minimum number of bytes required.

.payload_value - just as an ID has a value and mask, so can the (optional)
payload. For receives, this will result in a software filter requiring the bits set in the
payload mask to be equal to those in the payload value. For transmits, any bits set in
the payload mask will be hard-coded to be the corresponding bits of the payload value,
regardless of any payload fields that may overlap it. A typical use of this feature is to
identify a specific message by the first byte of the payload. May be a vector of bytes or
a hex string.

.payload_mask - indicates which bits of the payload are relevant for a receive slot, or which bits will be
hardcoded for transmits. If the number of bytes is less than the size of the payload, the
unset bytes are assumed to be 0, meaning do not care.

Phone: 877.234.1410

support@eneweagle.net www.neweagle.net MotoHawk Resource Guide: Chapter 3 CAN - Page 14

(message definition structure continued) _ May be a vector of bytes or a hex string.
fields{} - fields within message payload, as described below. (optional)
Describes individual fields within the payload.
May be undefined or empty if no payload fields are defined.

Structs in the .idcontent{} and .fields{} cell arrays may contain the following fields:

.name - name displayed on the block (default: empty string)
.units - units (of Simulink-model value) used in mask display (default: empty string)
.start_bit - indicates the least-significant bit of the field regardless of endian-ness (required)
.bit_length - number of bits in the field may spill across bytes (required)
.byte_order - may be ‘BIG_ENDIAN’ or ‘LITTLE_ENDIAN’. (default: ‘BIG_ENDIAN’)

(only ‘BIG_ENDIAN’ is valid for .idcontent{} fields)
.data_type - may be ‘UNSIGNED’, ‘SIGNED’, ‘FLOAT32’, or ‘FLOAT64" (default: ‘UNSIGNED’)
.scale - scale factor. Since the same message description (default: 1.0)

struct is used for both transmits and receives, the scale factor should not be thought

of as a gain. Instead, think of it as the units of the signal in the payload on the CAN
communication wire such as 1/100 of a degree for a signed integer representing degrees
Kelvin where 1245 (in the payload on the CAN communication wire) represents 12.45
degK (in Simulink model units). See equation below.

.offset - offset applied to the field in engineering units. (default: 0.0)
This is sometimes used to represent high-resolution values in a range far from zero.
To represent Simulink-model values from 230 to 270 Kelvin, a range of +/ - 20.47 degC
with 0.01 degC resolution is available using a signed 12-bit value in the payload on the
CAN communication wire with an offset of 250 Kelvin. See equation and example below.

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net MotoHawk Resource Guide: Chapter 3 CAN - Page 15

Advanced Example

Create a new model using motohawk_project(‘can2’)

Remove the existing contents of the Foreground subsystem

Create the model as shown. Build the model.

Run MotoTune, program the module, and open a display.

Run CANKing.

*For a larger view of drawing, open MotoHawk_Resource_Guide_11x17_drawings.pdf on the included training cd.

FRPRE TAAT
o) MetoHqu kK MotoT ron Corporation
i W R T
i v e b Cos]
5 1w Camt SintoHawt CAH Dabrasn
- Foragraund
T e T &
o =
—— T
L
MoloHawt Sesd CAN Metsage i
= = - =
R oy P et
LaEeTS CEEE) o bt
. m— — e
e —— = :
- - ——
=
.
o e e
— T
I === i i pman L ——pma o -
= e Torm grererrermoeenrey
e T
e e R Rt e i et P
i
T e e s Wl e
o e e
- _ i e e e i e Tt
P R e W s
== = FE e s

it e e L L

Fanan e b R A R L 4
| A TY O — -

HMotoHswt CAN Receive
S Pregedties

P]
i B bephand

Phone: 877.234.1410

support@eneweagle.net

www.neweagle.net

MotoHawk Resource Guide: Chapter 3 CAN - Page 16

(example continued)

Note the 1F3 message being transmitted.
The 3 comes from the Node ID input.

Transmit a message from CANKing and verify that the value

& Output Window
Ident Flg Len

is received by the module as shown by the probe values in

MotoTune.

1

OLF]
00000Z0E X
000J0E0Z X

8
1
H

Do..

oo
=11
=L

N O R P P R A L Time Dir

0 ¥7 FF 00 0D OO OO 0.003 R
0.000 R

oL 0.003 R

AN Urivesaipzee)X

\

CAN EnvelopeT [$2F1

QLc: [B

uneg o
el I
ez o
Line 3 |:*._

g <erd |

T vkl unagePadosflak (07

EE

-

bt [

ted [POM1]

£E

EE
EE
£E
EE

Phone: 877.234.1410 support@eneweagle.net

www.neweagle.net

MotoHawk Resource Guide: Chapter 3 CAN - Page 17

Recommended Usage _
Receive Blocks

*For a larger view of drawing, open MotoHawk_Resource_Guide_11x17_drawings.pdf on the included training cd.

Create a documentation cross
[FHCFEE TART
ano convoentr | Telerausk D Sy oratan reference for the datasheet.
Frll i Ay GO T By Sl _uw"r\.}'"
e o Vol L0 SR T
e as s et mra kst
T A O O T DTS _Dec?_Puged 0130
AT P TR t]
Use AgeCount port to
|= determine timeouts.
@ My o CoatiCAN Decumamiby b CAN i Ceal MDD M Sl 11000 _Dnall_ g) el L7 gy OO
l D — Create a timeout fault for
each message.
hag ek Eead CAN Mestage
chsmasly dni_l g st o
P e~ b - I... T L
ShbiteE T s | ' Ig'] TR — Probes all fields.
Beass Beduli: FRE QR el
Paaawvsl o oM
Widaagsi 0T daf o Pap B 430 Tam Comm it T m‘
meaaElgiEE T BeF 5 hage @ -8
Fagland BEea: @
e ——
LT EE R P I Said el bell bl Sall Sell Sl Beid | —

Datatype all signals.

Wi fw carp BAE W1 BRI B EEMISERED NDRERFLANR LBSH1 .

. Consider adding an override
- — for testing purposes.
ey i -

Er - _,m," l o] IP'_ -

Zero all signals if timeout occurs.

T
B T I Y MateHiwk CAH Rettive
I et [Ty ——

Mlans aA en_agel_imald
r.—.u-n.p:. I3 . A

Tilses 18
o

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net MotoHawk Resource Guide: Chapter 3 CAN - Page 18

™

=
> - -~ New Eagle"
C—/J-X\\ g

CHAPTER 4 : Memory Management |

Variables types 1
Knowing your memory 2
Why so much different memory? 2
Knowing the hardware 2
Familiarize yourself with the interface 3
Block Parameters 3
6 MANAGEMENT
Calibration : Default Value 7
Calibration : Output Data Type 7 MotoHawk is designed to be an integrated rapid prototyping control system solution
ga:?s'aﬂ"” : ’B*Cﬁes_s Les ; out of the box. However, once a system starts growing into a larger control system,
alibration - behavior
Calibration : View Value As 9 memory management becomes increasingly more important.
Calibration : MotoTune Help/Units 9
Calibration : MotoTune Min/Max 10 ,
Calibration : MotoTure Precidbr CA T T NRRENS N In this section, we will discuss the basic memory layout of Woodward’s MotoTron
Calibration : MotaTune Group 12 Control Solutions modules and discuss in detail the blocks that have the most impact
Probes 13 on memory usage and performance. Memory management of your MotoHawk
Probe : Name 13 control system requires the understanding of vardecs (Variable Declarations).
Probe : Name Source 13
Probe : Read Access Level 14
Probe : View Value As 14
Probe - MotoTune Help / Units 14
Probe : MatoTune Frea A C AR N e What to remember and what not to remember......................
Probe — MotoTune Group 15 .
i .| There are three types of variables available in MotoHawk; Constant (Const,)
Overrides 16 . : .
o . Non-Volatile, and Volatile Data.
verride : Name 16 .
Override : Name Source 16 .
Override : Override Access Level 17 : L .
Override : View Value As 17 : Constant : is just that, constant, never changing data.
Override : MotoTune Help/Units 18 .
Override : MotoTune Min/Max 18 . Non-Volatile data : can be changed and is saved between power cycles. Non-Volatile data is
Override : MotoTune Precision - Gain/Offset/Exponent 19 . predictable during and between power cycles because it will always retain its last known value.
Override : MotoTune Group 20 .
: Volatile data : can be changed, but is not saved. After a power cycle it will return to its
| original default value.

© © 0 0 0 0 0 0000000000 00000000000 0000000000000 00000000 0000000000000 00 o

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net MotoHawk Resource Guide: Chapter 4 Faults - Page 1

Knowing your memory _Woodward’s MotoTron Control Solutions modules include three types of storage devices.

Flash is read only memory and retains its information between key cycles. Control Core,
the MotoHawk application, and constant data are stored in the flash region of the module.

EEPROM (Electrically Erasable Programmable Read Only Memory) is similar to flash, in that it will
retain its information across key cycles. However, EEPROM can be erased and written to. This section of
the module becomes the most important when saving calibration changes and is responsible for saving and
recalling the non-volatile data in a model. Read and write to the EEPROM as your control algorithm changes.
We will discuss later when the EEPROM is written to and how to ensure that you safe guard your data.

There are two different types of EEPROM, serial and parallel. Parallel EEPROM is only available on a
development module. This memory is what allows the user to change non-volatile display and calibration
variables in real-time during testing and validation.

RAM (Random Access Memory) is only temporary memory space used for volatile data.
The contents of RAM are erased between key cycles. Any changes made in RAM will be lost once the
module has been turned off.

Flash is used to write information that can not be accidentally overwritten. This is why the program
is stored in flash. If the program was stored in EEPROM, one wrong memory write and you may have
overwritten a vital part of the control system.

Why so much different memo_.

EEPROM is the work horse for memory management of your control system and offers the best of both
worlds. It is capable of storing information, but is also capable of erasing and writing new information.
There is one draw back to EEPROM — any given memory location can only be written to at most 100k
times. So if you were saving a variable every bms, it would not take long to reach the 100k cycle and
possibly burn out that location of the EEPROM.

To avoid this problem, the contents of the EEPROM are “shadowed” into RAM when the module is turned
on. Changing a variable that will be saved across a key cycle is actually changed in the RAM copy and
shadowed back in the EEPROM at shutdown. Later you will learn how to save the Nonvolatile data based on
your own criteria.

Knowing the hardware. ... L0 il . Wodward’s MotoTron Control Solutions modules come in two different versions.

The development version has an added parallel EEPROM region where vardecs are stored.
This extra memory region allows the user to view and change calibration and display variables using
MotoTune and is typically used for testing and calibration.

A production module contains only the serial EEPROM. No real-time calibrations can be
performed with this module without explicitly assigning the variable to be stored in the non-volatile
region, which we will discuss in the next section. In this way, the cost of production modules is kept
down relative to their development counterparts.

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net MotoHawk Resource Guide: Chapter 4 Faults - Page 2

Familiarize yourself with the in
Before we discuss each individual block in-depth, let’s look at
the similarities you may find when looking at their masks.

Mask parameters are accessed by double clicking on the block. — | 2o 9 |

A separate window will appear listing that block’s mask
parameters.

Anything said about this block’s mask parameters can be applied to any
block with similar fields.

7 Bioch Parameters motahaws_calibiaten
I ek, Coalbn e’ frainsl | firk)

Thin blek peswidinn i xnrmchion b MotaTure, aned sl nunime seodiicsion of
ot s et ey Mok ures ksl

b ik Espbapwn i momligtion B & Constant Block, nd scoagts any bl vl
at s Do Vighan: clafieg) dalitygong cacta

1 e v chaplaec] o B block s e vk, 7] vl b 1, I i oy Bt
willen i ot crvemmhen by i e spainon ol ity et vanisble, cislend

MDY casks, v MODEL ks B v o s mociel

Prata M lar ancos iceseasion

Cipyaghe 2005 eotoTan, bne. Al Fights Ressnwed

Fap grrwery

Block Parameters —__

MotoHawk has three basic blocks that allow viewable variables
to appear in MotoTune: calibrations, displays, and probes.
Note that MotoTune makes probes a display variable, so a probe will appear

e
[l s]

Dot vk

fo

[P prra— =]
O o huous ekl P singy ———

in the display portion of MotoTune.

Name : This field can be any MATLAB expression (such as
those in the Motohawk_can_example.m file above) or a string,
so that it can be called from other MATLAB functions.

If a string is used, make sure to enclose the string in single quotes.

Default Value : This is the value that takes effect from
the first time of programming. It remains in effect until it is
changed using MotoTune.

Behavior : This is where you decided what type of memory
this variable will be stored in.
Calibration - Flash (prod)
— Parallel EEPROM (dev)

Display - RAM
Calibration NV - Serial EEPROM
Display NV — Serial EEPROM

Show Additional Parameters : Click the check box to show
a list of additional parameters to modify for this block.

o | gwed | e | s |

@ [——— o Akl Pt ———

[T A Ty —— =]

[FIF] 17 PY [P pr—r———rr— =

Floadiccams Lowsl [1 |

ik Accai Level | 1 =
P Ll uploed falbepbhor vakast Bom Mo ure

[T [T— T =
Ilwllﬂﬂl:'.‘l fibara] i]

Shwms BcdaT s s ared Ui

Sl iy e b Vs

Ghaimn B ureh Proceson, Gan/ Diset Esporert
— G s Mo s G —

[o] cwed | i | aeok |

Name Source : “Use Parameter” is the default for this field,
— which requires the name field above to be entered. Other

choices include “Use Output Wire Name”, or “Use Input

Wire Name”.

This will gray out the “Name” field and reference the wire name attached

to the block.

For a calibration, if you select “Use Output Wire Name”,

then double click on the wire attached to the output and

provide a name for the wire, update the model, then the

calibration block will take the name provided for the wire.

Output Data Type : By default, MATLAB makes all data
—types double. By not making a selection or specifying it

in the “Default Value” field, then the output will default to

double. Otherwise, you have two ways of specifying the

data type. You can leave this field to “Inherit” from “Default

Value” and enter the data type along with the “Default

Value” field. (For instance, unit 16(0)). This indicates that the

default value will be a 16 bit unsigned integer with the value

of zero, or you can use the pull down selection of this field

to explicitly identify the output data type, such as uint16. You
can then leave the default value to be just the number zero.

Access Levels : Access levels handle the security of the
control system and relate to the access level of the MotoTune
security dongle, as well as the port access level specified on
the PC connecting to the control module.

Access Levels range from a value of 1 thru 4. By default,

all the blocks that have access levels are set to “1.” Anyone
with a MotoTune security dongle with access level 1 or above
may view and/or change this vardec. Since 1 is the lowest
access level, everyone has access to this vardec.However,

if the access level was set to a 2, and your MotoTune
security dongle only had access level 1, you would not have
permission to view or change this vardec.

By default all MotoHawk kit dongles have access level
number 4. Since level 4 is the highest, those dongles have
access to everything within the control system. Lower level
dongles are available from Woodward.

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Resource Guide: Chapter 4 Faults - Page 3

Block Parameters continued...

Hare Srmce :Uu.ﬁaﬁﬂu .':,

Dutpet Dista Trpe | Inhest born Tt ishor'
Pissd Ancens Levad [1

v T Tt
Ui uksdend calbration wakabi b MaksTur
Wt Vot A2 | Humbes -]
Erarverynos [Coll Shng o Swyust]
[Mikat, Eratie

— B MotoTare Welp srad Linde —

Bl M gy b e ey, ——

— B Mool ure Preconn, GareD list Taponsn —

— Sy Miga T ures Do —

0 | Ceed | Hee | e

Use uploaded calibrations values from MotoTune :
This selection indicates if you want the source of this
variable to be a separate MATLAB file or if it may come
from a different source.

The MotoHawk upload calibration feature will make a

MATLAB m-script for every defined vardec, but if a vardec
is generated from a separate piece of software, you want
your model to ignore the value located in the m-script file.

For example, if you were constructing an autonomous
vehicle that included GPS coordinates and the
coordinates are generated from a mapping program, you
would deselect this option.

View Value As : MotoTune has been designed to show
data one of three different ways: number, enumeration,

or text. If enumeration is selected, then the Enumeration
field may be used to specify the text associated with the
enumeration. What you see in MotoTune will be the text in
the Enumeration field (On/Off, Start/Run/Stop, etc.) instead
of a number. Be careful to make sure the enumeration text
and numbers align properly.

Enumeration (Cell String, or Struct) : Enumeration
associated with the input when the “View Value As” field
is selected to Enumeration.

Show MotoTune Help and Units : Select to show help
text and units.

P L Lree—

M Yoo | L Favasss =
[¥ S permere—"r =]
Pasact oy Lot [1 |
i s L [1 =
P Live sk cabnsice vabhans b o

[CRMTH ey =]

Erummrir: Kol Sy o Damns]
=t trae

e b et e iy

o Witn” o P, (G O e] gt
s Wiain” e Geingy

| owes | g | ww |

Help Text : Text to aid the MotoTune
users what this vardec does and what
it might effect if changed.

The text shows up automatically with
calibrations. The help text and units
automatically display with calibration
values.

For displays, right click on a variable and select
its properties to view the associated information
including the help text for that variable.

Units : Indicates to the MotoTune
users what units this vardec is
specified in for clarification during
testing and calibration.

Show Min and Max Values :
Select to show min and max values.

s D P | ot e T s -
Fad docan Lrssl [1 =]

e i Lt [1
[TR
Vi ki . | Mo =

mum-u
BT

— S Ty by gre Ly —

[i g e Vi —|
[T

[

i sk

™

Minimum Value : Minimum Value for this vardec.
This will clamp the signal in MotoTune.

If an attempt is made to go below this minimum value, then
MotoTune will display a clamp value message and will force the
value to this minimum value and no lower.

By default the minimum value is —infinity (-inf) to
prevent MotoTune from clamping the value if it is
changed.

Maximum Value : Maximum Value for this vardec.
This will clamp the signal in MotoTune.

If an attempt is made to go above this maximum value, then
MotoTune will display a clamp value message and will force the
value to this maximum value and no higher.

By default the maximum value is infinity (inf) to
prevent MotoTune from clamping the value if it is
changed.

Show MotoTune Precision,
Gain/Offset/Exponent :

Select to show MotoTune Precision information. The
Precision, Gain, Offset, and exponent information is
for MotoTune use only.

This is not to be used to convert analog/digital counts (ADC) to
engineering units.

These values are typically used to allow the designer
of the system to use proper system units, but display
the value in more convenient units in MotoTune

(ie. English units, SI units).

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Resource Guide: Chapter 4 Faults - Page 4

gpm—] p—
[T i — =l
[FFNT PN P pree—r—rre— =]
Rasbsmsn bowst [1 =
twten drmen L |1 =l

' Urm apheatiod ool . sk o bisin lurw
Vi ok i | i =
[(R] oy ra—

— s e o ity —

o T o -

Pracaan
e
s
=
L)
]

Tt
i
s T e

| owow | we | e

Precision : Sets the default precision for the
variable. The format is: ‘width.decimal’.

For instance, if you wanted the entire width of
the variable to display 6 digits with 4 decimal
places of precision, you would enter ‘6.4’. The
width takes precedence, so if your variable

is six digits, there will be one decimal place
applied. However, if your variable becomes a
seven digit number, then the precision would
expand.

Gain, Offset, Exponent : These values only
apply to how the variable will be displayed in
MotoTune.

These values are not to be used to apply a gain, offset, or
exponent for ADC to Engineering Unit conversion.

The equation is as follows :

MotoTuneValue = (value * gain)exponent + offset

This determines how MotoTune will organize
the data within its messages and how it will be
displayed. So, if MotoTune were to display a
value in 1000’s of RPM, a 1 would appear in
the cell in your display window for a value of
1000RPM.

L S T T T O S e e g S
- b &g Py g

P G [P

Ot Gt T [t b i ¥ sk
P Ao Lossi [1

et e rdin e

R L apkcaded sy g o Ala " e
Vi ke s it

KCind oy an St

(L1

[tea=
S i | ure Hath el Ly
L bl W -
— s Mok P, s O . spursrd —
[Ty e— |
Tt Cring T
[momchuaet_«wrmc_paborey

| g b | e |

Show MotoTune Group : Select this
to specify the MotoTune group.

This entry allows customizing of the
group structure in MotoTune.

Just like the Name field, this value can
be an expression, which means it can
be a function call, just as the default
value is. The default value “motohawk_
vardec_path(gcb)” returns the path
structure of your model.

For instance, if you have a calibration
in a model just under the foreground
task in a model named example,
then by default the calibration will be
located under example/foreground/
calibration in MotoTune.

To specify your own directory structure,
use the vertical bar (pipe) to separate
the paths. So, to put the calibration

in a folder called calibrations under
controller, you would type: 'controller

| calibrations’ in the MotoTune group
field. Remember the single quotes.
MotoTune’s directory structure consists
of folders, pages, and values.

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Resource Guide: Chapter 4 Faults - Page 5

Calibrations
Calibrations can be described as a MotoTune accessible
Simulink constant block.

Unlike Simulink constant blocks, the MotoHawk Calibration block can only be
used once per declared vardec in the model. However, because a Calibration
is composed of a Data Storage block, you can use a Data_Read block to
access it in other parts of the model.

Calibration = 0
(Calibration)

motoh awk_calibration

[-

Constant

Calibration : Name
Because the name field is evaluated by MATLAB, the name field

can accept any valid MATLAB expression that returns a string.
Typically, that is useful when masking subystems.

Most of the time, you will explicitly give the calibration a name,
or use the output wire name as a reference for the name.

In example 1, the name for the sine wave frequency calibration
is explicitly defined by selecting Name Source to be Use
Parameter and providing a MATLAB string enclosed in single
quotes in the name field.

1"} Bioch Paramwisn. motshawi_callirationd

Calibration : Name S
To make a calibration generic to the wire you attach it to, you

can make this selection reference the output wire name as was
done in the SineAmplitude_cal block.

Notice that the name field no longer exists as it did in the
SineFrequency_cal block.

[T E——T

Tom Homb grommies - mrmiins b bt s) all v sy ol of
B TPy

o st e 1 o e Lot bk et ek s e el
o T s sl bbbt

i et b b e e . i e o e
e s
L e e A
Bt b B P

T T L
e

[K

|:_. E -
s

[Rasf g sl

Dt Vbt
fr

L]

= arms d dured Fuarmr

L ST e — =]
[rrpp—— =
- =
ot s Lt [0 =]

B
i i [Vt
[iin (ol fremg o s
[l T

L T T T
ey
@ g] g P, 0T garwr —

[t

eyt gt e | b
He bt v s & Mo T el e s v ot o
Pt cony e i el

B ki e s e B b B el et i <
u-.mmm

el i e B
e e T) . it

MCTHCL ¢l e s o o o el
[T —

Lo S Moo M g

Frwen

ot Ve

Franmd

Bt | e =]
= | T RT M——

[L T e y—" =
e s s [i Bl
l—ll-—L-l 0

i B et [8
L e
[P e =l
Ko T o & Bl
Froamt tetmil
5 — S b . st —
o
From v o vt et bl e
G
rimat
b s e
e e il P (e 0] e =
P
o
fa
]

B R T T T S e S e

N

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Resource Guide: Chapter 4 Faults - Page 6

Calibration : Default

Because the default value field is evaluated by MATLAB, the
field can be any valid MATLAB expression that returns a number.
This is the constant value this block will output unless calibrated by Motolune
to be something else. This can also be used to specify the data type.

What are valid MATLAB expressions?

Matlab expressions can be workspace variables or MATLAB
functions that return a number. Commonly, an m-script is
made with calibration values stored by name. This m-script is
called and all the calibrations are loaded in the workspace and
the default values reference those values.

Calibration : Output D

Here is where to explicitly set the data type, or allow it to
inherit via back propagation. Inherit via back propagation
forces the data type decision based on how the calibration is
used. By default, it inherits from the default value, which will
be double if not specified.

Be careful - it is easy to drop calibrations all over the model, but if you
allow them all to be doubled, you may be wasting memaory.

Calibration : Access Levels |

Trm Himb promiey g oot Wil e gl i v Sy sl wis o
g e o b e e

o st e 1 o e Lot bk e sl g Bt vl
i T s b e g

¥t i gt e P ok b e) et 0 . o ko e Fu
BB LR AR By b A N L e
B g e M e et

P g by s PR
[P —T———
rma—

e

[——

[——
fr

[B [
= e]
Vi i [Lom P
T e —
Wi s Lows [1
e B L [1
o L, it it i s e
(SR ey
[ol W ol

[et

L o I TI

1]

[nn

[t

HE=—
L

eyt gt e | b
He bt v & boc . wd s e e
ey b e vl

Bl (ki e e B bt ik el s M <
10 ki g S

ne - ok P o s e
e, ety § g ke et e gk
MCDL s ~hems 5 e f el
vy e e

Loyt JUT Mo o, b M P P

Fpw

Bwma i

Franmd

B s [i ol =
[TPNT PR e
il Liveat [1 o -

[e—— 3
e

wins Vilan s [e =]
Ko T v & Bearr]

B — lus in e g arudiiods —

Pap Fad = -
L Ll L e rep——
(Y

[

e b et B s

W e e el e Pt 0] e —
Bimrar

o
o
]

e

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Resource Guide: Chapter 4 Faults - Page 7

Calibration - Behavio

How will a user interact with this calibration? Will it be seen
in the display or calibration window? Does it need to be
accessible even on a production module?

In Example 2,

B vardes_examplel, . [Example 2Subiysten *

The Maintenance Interval Reset was specified as DisplayNV.
This allows the value to be accessible, even on a production
unit, so maintenance personnel can reset the alarm once
maintenance has been performed.

In example3,

Fle Eck Vew Smiston Format Teck Hep
DFEa » & P a0 i - HEE@

REET P

The calibrations are set to Display. The vardecs will still be
stored in flash or parallel EEPROM, but will show up in the
display pane of MotoTune and not the calibration pane.

= =
v vardec_example/Foreground/Example 3 *

Fla Bdt View Simulstion Format Took Help

DFBS LR bonfo e = B BE

REDT*

[ERCPRIE TARY
AND CONRDENTIAL
T PRI TICH EONTAINED 4 ThTS

MeotoHgu kK

MotoTron Corporation
B Mot M, Slafpimngl, ol Bl 1
e ook oom (T80 33570

SRAND [Tl SOLE FROSERTY OF
ROTOTRON . ANF BEFRODMC ION W
FARTOR A5 & PWOLE T T Tal
a1 T SR 20W COF GO TRON
1 Bk e B 2004

Tasengbon:
vardec_sxample
Exampie 3

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Resource Guide: Chapter 4 Faults - Page 8

Calibration : View V—
How will the MotoTune user view the data: text, number,

or enumeration? Most calibration will take on the form of a
number, but enumerations can also be useful.

Notice in the Override_abs block for the PWM signal,
the PWM_ovr_ovr calibration is an enumeration of “pass- AR i
through or Override.” BES TRAs o R o AmE e St me———

o i
kg -
ERRL nal e S 2 e e sk

Viewing this calibration in the display window of MotoTune will give you the MotsHazwh Absolube DVEITIIR | e e e e
selection of Pass Through or Override and not a O or 1. This is a much more o SRR 137 et

explicit representation to the MotoTune user. The enumeration value is also [~T T |-
any valid matlab expression that returns a cell array of strings. ey

e T ™) T
e L | W
T

ol e]
ok, vt e, mnapied . (Laamige |t i_sewii8s_as

') L
s | ——]
[remgmt | s -
—— .

]

e B
v W s L b gt

Calibration : MotoT

Help and Unit information for MotoTune user.

Notice the help text and unit information that is displayed next e o i e T 5

to the calibration. rorg] s e e 4 o e L

If the vardec is specifed as a display, you must right click on VBT T T

. . . . oo 18 T
the value and go to Properties/More to view its help and unit i
b 5 Wapmmghi 39 Ssial w40 Ry Framarem}
information. :
=—
—
[= =)
B bbb e
i Lot b0 [gt =]
[N (P [P e —r—— =}

i g

Ui . e i o BT

e ptan 8 [=]

A b e g]

Errma

o Rt i e

oy

T Ty of o e e’

[

{IETS

bl e e s

~ Bwm T Fon, Ban TP L
i —

B | e | g | e |

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net MotoHawk Resource Guide: Chapter 4 Faults - Page 9

Calibrati
In the SineFrequency_cal a minimum an
specified.

If you attempt to calibrate the value outsi
MotoTune will generate an error and infor
outside the specified range.

Very useful to ensure a calibration is not accidentl
specified range. This min and max takes into consi
or exponent that was applied to the value.

vl s _ERaTE

New Eagle

i | Lot =
o T e g

L [— =
[N = = e p— =
[T =
e o Lt [1 =
T]

e [Wit =
e

s g Ll —
o e bl i =

fal.]

I e b]
Kot I tha g —ﬁ-ﬁ_ﬂ-uwu

Phone: 877.234.1410 support@neweagle.net www.heweagle.net

MotoHawk Resource Guide: Chapter 4 Faults - Page 10

Calibration : Moto
Gain/Offset/Expo

MotoTuneValue = (value * gain)exponent + offset

Precision is specified as a string or a valid MATLAB expression
that returns a string in the format of width.decimal. The
decimal will take precedence if the number becomes larger
than the width specified on the left hand side of the decimal
and will always maintain the specified decimal precision.

The width is specified to be 3 with 1 decimal precision.
When the number is larger than 99.9, 1 decimal precision is maintained
and the number increases to a width of 4 to display 100.0.

If the vardec is writable like a calibration, and the value is
entered as 10.35, MotoTune will round the value up and
display 10.4 to maintain the specified decimal precision.

The rounding is merely for display purpose only and the value is actually
10.35. To see this you can change the precision in MotoTune to use 2

decimal precision and then the number would be displayed as 10.35.
Changing variable precision from MotoTune is covered in the MotoTune chapter.

Gain/Offset/Exponent is used to display and calibrate the
value differently than the actual use of the value down stream
of the calibration block.

The default value is 1, but the value will be multiplied and
scaled by the specified gain, offset, and exponent to be
displayed in MotoTune as 10.

When changing the value in MotoTune — the above equation
reverses.
In this case the value changed in MotoTune will be divided by 10.

ODFEHS Fae o pofil i Bebda nBm
[| GRETAN

Mot olgonk

MoteTron Ce

el s it
e mbent e TR

RT3
WA _SLImple
Exarnpm |

bk B P
i Dot V. poieding dewngng cadt

B b ok g 4 B b b s . ol 0., s e B

il micieny by 4 oo 1 nay ol shon e
i Lo v o B il

R e il

! watdee_sumnpied . Tamsge L Wave *

ke e | BMD®

REmT 4

[p—
B —— e i P ——

L

S v [|1 P

LN 1T T [Ty ———
Font b Lo [1

e s Ll | 1
e T

Lad (&4 Lof 1]

et s b
A gl el Lo Y

L4}

Toama st]
= g Wity | i el Ll —
o b B e g W -

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Resource Guide: Chapter 4 Faults - Page 11

Calibration : MotoTu_

This is a valid Matlab expression that returns a string with
folders separated by the vertical bar. It is used to organize
system values into groupings that facilitate specific functions,
such as in calibration or maintenance.

By default this value runs a function called motohawk_vardec_
path(gcb,) thus the location of each vardec will be the same as
the model.

Open Simulink’s Model Browser (View,/Model Browser
Options/Model Browser)

Notice the similarity of the model browser’s tree and the MotoTune tree.
The vardecs in this example have not yet been put into any specific
MotoTune Groups.

You can also specify your own string with the MotoTune folder
name separated by the vertical bar.

=== |

W l"l-l'l;."lﬁ_'l tmp.h-.FFm-:rnunniﬂZ

DFES L@ o
Micch| Broverm: al

|.'.1. Block Farameterns: motohawk_calibrationd
Wit ek Caln ataon [k | Bk |

Tires ook peceeaben & convachor o MiokoT une, and alicws an-ime mocfication of
calitvafion values vith the MotoTune tool.

Thur bk Bghurna i sraulbe beoo a Concband bioc k. and sccopls any Mallab vahm
o ka D alel Yalue, nchucding detie-lypng e

11 s b ke o [ook, ae an actossk 7] nest 10 . T incicales al the
e i e orvees noddlemn by & workapsos calbeation sbuc vansble colled
MIODEL_caks, v = tha rure of e el

Press Ml [or mons infosmalion

[Reecly

£ ¥icionSubnalem
£ ¥ Action Subsptan]

| Ewarph 3

B Esrols 4

] Ewavole 5

] Euarple &

B Exampls T

%] Enargle @

— N T TN T T T

Cooperghl 20008 bzinleen ire Al Rights Faseraed

~Pisimeter -
Harme
[equercy_caf
Dl i
fi
Baharviol [Caitysten
e Sheree Arckliior il Prsarasites =
Hame Souce | Liss Paamter
Dutput Diots Ty | it via bk propagation
Faad feaust Lawal [1
Wle decess Lined | 1
[Uze upkeaded byl nn vl bam Mole]ue
Virw Vialue &1 | Number
[Erumeiniion [Call Sting, o Saruct)
O dindt, Erabiadt
" Show MckaT ure Helg and Unks —-
— Sk Wi ared Mo Valass —
—— St WckorT ur Provcisaon, G-l 0N st /Esponnt —
[— S ek e G —|

b4 oo T G o Shong
[Cals Proksa 0 vesiden | S’

Led

Lad Lad Lo Lo

le

[o | et | bt | ot |

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Resource Guide: Chapter 4 Faults - Page 12

Probes

Probes are read only displays stored in RAM. A MotoHawk
Probe is similar to Simulink’s native display block and scope
block. Probes can be very helpful when testing and debugging,
but if used carelessly, they can use more RAM than necessary.

Probes will require extra memory when the wire it is placed on
is not already being kept around between execution cycles in
the system. Meaning if the control system design requires the
value of a particular wire to retain its value between cycles, the
value will be allocated memory space. Probing such a wire will
not add any further memory because the optimizer recognizes
the two values to be the same and they both reference the
same memory location. However, if the signal is not kept by
the control system, then adding a probe will require more
memory.

Remember — There are only 1,793 available vardec definitions. For 99% of
the applications, this is more than enough room, but if your application uses
many tables, the number of vardecs in your model can grow very rapidly.

Probe : Name

Because the name field is evaluated by Matlab, the name field
can accept any valid Matlab expression that returns a string.
Typically, this is valuable when masking subsystems. Most of
the time you will explicitly give the probe a name or use the
input wire name as a reference for the name.

In example1 of the vardec_example.mdl, the sawtooth wave
probe (SawtoothWave_prb) has an explicitly defined name.
The sine wave probe (SineWave_prb) uses the input wire
name as its name reference.

Probe : Name Source

To make a probe generic to the wire you attach it to, you can
make the block reference the input wire name as was done in
the SineWave_prb block.

Notice the name field no longer exists like in the SawtoothWave_prb block.

Mot Probe ek ik

ok ko vatu e Bt Turs ool

g (et e Mol sll be O sl 07 e Do
Frugprmarrag Vakas Plinss M b ok T e B el
Wreetn M Fof oo infoTrssion

Copynphi 08 Wil o, e AR Flghis Feesmn)
[——

i

Rantitiial v gt

F ——— Sioedaiinna Passsie ——

Thin block, providies & connection o Mok Ture, snd s st chosevstion of

Th Mo Semace ferkd oo Fe riamet 10 50 matered bl rosbusied 2 9
B gal aopeiior, o i gy bt wihudsbeed bovs e wires of the Pl see. [T s nafe @

LT [m—

Read Aooess Ll | 1

Wiew Wakie bt | Hunte
Ermernion (ol $airg, o Sl

Lol Ll o]

|
F —ShovwHoiaTurs Pecsion, Den Db qoned —
Mrecatian

e
fiain

i
i

a
Egumeni

1]
FF — S b T g —
BtaT e Demis Sleing

[l Probes Dvereces | oot

[| Cowd | sk

Im.

7} Block Parameters: motohawk_probe’
P o k. Fioston st | it §

This bleck provides & correcton ko MobaTune, end glosss rarviime shaseration o
i ka1 vl o B ok T ool

Ther Marne Sonsce field sloss the rame 1o b entesed a0 o Ll svalostedan o

Haflak epresane, of L miy be inhested bom e name of e rou s IFino name §

e, [Liscefirec Name] wil be deaplaged on e black,
Ergpresssng Ul = [flses Mochde Vb Tasn| Eapl-Oficel
Preeza Helg i i e,

Copynght 205 Mol Tion, bnc. A8 Flights Beserved.

Fasmeien
F [ire i Ghinn BuhStemal Patasepters - |

s Seurem [e Input 'wire ame

Phoe Aovesa Lewel | §

View sk S | Numbe
Eroamatr gt [0l S ing, 20 Shuch]

Le) [4] Ll

| ieabled | Tt

e G bt M i T Hie el Uil =
W — S ot T Pricson, BTl Fagemnt —
Prmcion

Fannr
Ban

]
-

o

Eaporast

h
W — 5 how Mot urw i —
ek e v Sy

[Tt Pasbae Dvamdis | Sne’

o | ced | b | e

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Resource Guide: Chapter 4 Faults - Page 13

Probe : Read Access
Access level is a value from 1 through 4 (most open through
most restricted.) There is a comparable access level written
on each MotoTune dongle.

By default, MotoHawk dongles are given an access level of 4.
This means that the dongle can access any vardec with access 4 or below.
Since 4 is the highest, it can access everything in the model.

By default, access levels in the MotoHawk blocks are set to 1.
This means that anyone with a dongle of access level 1 or above may access
this block. Since 1 is the lowest, it can be accessed by everyone.

To restrict access with the MotoTune dongle, you will need
to purchase dongles with access levels 1, 2, or 3 and
change the appropriate access levels for each block with
MotoTune interface.

A probe can only be read by a user, so there is only a read access level.

Probe : View ValueAs |

How will the MotoTune user view the data: text, number, or
enumeration? Most probes will take on the form of a number,
but enumerations can also be useful.

Only consider using an enumeration for a probe block when the wire you are
probing has predictable values. If the input to the probe does not exist in the
enumeration, the probe will display “undefined” in the MotoTune window.

Probe — MotoTune Help / Units 0

Help and Unit information for MotoTune user.

For a probe, right click on the value of the probe

B WeinTune [Jeff Rinker] - Dicplay]
= el

Specs TOndow e

e

B isplay
5 % Dilaplay 1% on [POMEL)
=120 Cals Probes Owermices
¥ L3 P

= 00 Sne
® 0 Sine_tar Overmide
L Searve_pib
® 20 Dot Seoens
& 2 Cxher
& 21 Systern
= 2 vardec_sarmipls

and select properties. Another small window will appear, then
hit “More” to display information about the probe.

Flake |5}

- o
———— et | —
Cacha Dutag S|
m =

[B ———

s =

Clare Warable

T A iple fasng pont rmdi

Siouge FUAN Pzbest

Gangr ok Probes Ovemdes | Srm i

Gan 1Hera P

Dot B Hors

Exporaed 1 Mowes BE

Mawmom 554007 Mo

My E N P Hers LASENGRER
e

i ‘"“ sl ¥ e

Poormetes 5

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Resource Guide: Chapter 4 Faults - Page 14

Probe : MotoTune Precision Gain/Offset/Exponent.

MotoTuneValue = (value * gain)exponent + offset

Precision is specified as a string or a valid MATLAB expression

that returns a string in the format of width.decimal. The N st b SIS b ———

decimal will take precedence if the number becomes larger Amcoveerm. MotoHbak epedltiady . ;..,‘...::.._ B
than the width specified on the left hand side of the decimal R g b bt b et o e
and will always maintain the specified decimal precision. iy e |S—t"",:'1:"_"‘“

The width is specified to be 3 with 1 decimal precision. —_— S AT

When the number is larger than 99.9, 1 decimal precision is maintained

LA
and the number increases to a width of 4 to display 100.0. w*

(.
If the vardec is writable like a calibration, and the value is Bk e G|

o e kg P -~

entered as 10.35, MotoTune would round the value up and ra ol
display 10.4 to maintain the specified decimal precision. . : , - || S =
The rounding is merely for display purposes only and the value is actually M — :::r- g

10.35. To see this you can change the precision in MotoTune to use 2 |:I:| '3 .l iR D B e I EmbE: REmTE ERT R ——-
decimal precision and then the number would be displayed as 10.35.
Changing MotoTune precision from MotuTune is covered in the MotolTune

s S

i
f
f

Gain/Offset/Exponent is used to display and calibrate the
value differently than the actual use of the value down stream
of the calibration block.

The default value is 1, but the value will be multiplied and
scaled by the specified gain, offset, and exponent to be
displayed in MotoTune as 10.

When changing the value in MotoTune — the above equation
reverses.
In this case the value changed in MotoTune will be divided by 10.

Probe — MotoTune

This is a valid Matlab expression that returns a string with
folders separated by the vertical bar.

By default this value runs a function called motohawk_vardec_
path(gcb). The location of each vardec will be the same as the
model.

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net MotoHawk Resource Guide: Chapter 4 Faults - Page 15

If you turn on Simulink’s Model Browser, you will notice the
similarity of the model browser’s tree and the MotoTune tree

with the vardecs that have not yet been put into their respective

MotoTune Groups. This is good if the Controls Engineer is

also doing the testing, but for a calibrator, the levels may get
too deep and you may want to specify a better, easier to use
MotoTune layout. You can also specify your own string with the
MotoTune folders separated by the horizontal bar.

Overrides
Overrides are inline calibrations and have both an input and an
output. There are two different types of override blocks. Both
blocks create two vardecs that can be manipulated within the
display window of MotoTune.

The override relative block is a way to lock the output and
apply an offset. It was designed around some legacy software
and is typically not a block that a control system will use.

The override absolute enables the MotolTune user to ignore the
input and use a specified value. Notice how under the PWM_
ovr Override_Absolute block is two blocks with _ovr and _new
appended to the base name given under the mask.

Override : Name
Because the name field is evaluated by MATLAB, the name
field can accept any valid Matlab expression that returns a

string. This is typically valuable when masking sub-systems.

Override : Name Sou
Similar to calibrations and probe blocks, the override blocks
can inherit a name via the input or output wire name.

If you select either of these choices, the “Name” field
disappears. Then, by specifying an appropriate name on the
wire attached to the block, the name will change to this value.
When using the wire name to identify a vardec, avoid using spaces or
special characters.

b Ovwerride_Absolute '
=} T

T b e T A TR

> Overide_Relative F

ik vaide_w

g,

S ple Virelohaws_averiide_ala *

Pef e | efd . RE@E

MotoHawk Absolute Override

o ol v, Aol e Clvrrade [l i)

T bea b, o @ o fun b Muts | ure. ond alioes rrvbem eodfcalon o
obseivalblip o wirg walisd with e MoaTure el

Momwally e Biock: bebaves a0 o weple prasfeouch. Ldng HoboTues. P oufpad
e TEY P R e e

Engresnng Valas = [Fawe Moduls Viahas S anf Lap| =0t
Frata bk o iy indaematienn,

Coppaghl 2005 MataTwn. ing. Al Righls Revereed
Paanniei
R~ Bhow dddsiond Faymeters ———

A Fepdimplnasts

Hiwwe Soures [Use Input e Name |

Fisad Aoram 122 Faarein J
[T e Ltz Woe Mamm

| S TN [——— |
€ rasmms b [S, o0 S|
[Plows’ gl
o= G My T L i a0l Ui —
Shed i] B st ——
- G T Lt Pt a1 st F conant —
— ST une B —

o b | b ek

M
[
& ——— Show huddons F s areliey ——

Wiew Value b | Mumber =]
Erumesston Tl §rmg. ca S|
[oinshiee Fropsest

= e HheanT ur el ared Dbt =

—— b bl ol M W ks

— Shawe Mo upe Preciier 0and O b/ gerent —

e S bl L Gy =

| pwed | ue | ew

Hme Smane | Liw Passtier -
Baoad

T | U bt e e

Dvimide LT e Mame

J

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Resource Guide: Chapter 4 Faults

- Page 16

Override : Override

Access level is a value from 1 (most open) through 4 (most
restricted). There is a comparable access level written on each
MotoTune dongle.

By default, MotoHawk dongles are given an access level of 4.
This means that the dongle can access any vardec with access 4 or below
and since 4 is the highest means it can access everything in the model.

By default, access levels in the MotoHawk blocks are set to 1.
This means that anyone with a dongle of access level 1 or above may access
this block and since 1 is the lowest means it can be accessed by everyone.

To restrict access with the MotoTune dongle, you must purchase
dongles with access levels 1, 2, or 3 and change the appropriate
access levels for each block with a Motolune interface.

Override : View Valu_

How will the MotoTune user view the data: text, number,
or enumeration? Most overrides will take on the form of a
number, but enumerations can also be useful.

Notice in the Override_abs block for the PWM signal, the
PWM_ovr_ovr calibration is an enumeration of “Pass-Through

17 Block Parameters owerride_enable

or Override.” Viewing this calibration in the display window
of MotoTune will give you the selection of Pass Through or
Override and not expect a number O or 1. This is much more
explicit representation to the MotoTune user.

The enumeration value is also any valid MATLAB expression ——
that returns a cell array of strings. Make sure your enumeration
order is specified correctly to avoid any possible confusion

when changing the value in MotoTune.

Mo ameh. Camatirs o | ik §
= Wham ik prwicio o comneoion b oo Turm, and sl srevims modfcaters of
171 Link vardes_sxsrplel.../Exanple imatahesh_svetide_abs * e gfion vukarn nelh o blaska rm il
J : h N?MnmhaWMnmnmm
DiEE& R Pl e D REBR® w0 D tana kot kg daa-bpeng rasm
Wt wiom gl i o Ll b B iy b [7] et B . Vs bl B
ke i B g reneuion, by 4 pelrpace st wasable. Caled
ML g, wheen e ry——
MotoHawk Abgolute OVErTIde | pu sk o res resse
Coprighe 2008 M stsTron, Ine. A Rights Flasesed,
P = [. min Lo e
et - J
| Hama
ey : | Tr—pr——
7 : [
ot H e
=T i e | Dy =
W ——— Ghos Adenal Pacsmsten ———
)
S 2 :. e M Source [Live Far s |
- Dt Dty Tom | Bosdnin =
A raah el Aonn Ll | 1 =
‘whlls Ao Lewad | 1 =
P L= pormi ot ot i) Bom s Ture
i Vil | Erurmmiiien =
L (Dol S, 0 Sance}
[P s T hwwagry, Drvemied
= i Wi T e iy o Lok —
o Cin WA el M s
< haonm Wt T e Fhpcssion. Gour T Bost f rprard -«
ey e
[Peady 1006 s
| =
=)
B Display
= 5 Digplay 1 * on [PCM-1] . - = = - S = L
& 0 Cby Proess Owverndes T -
51 P g
23 PWM_onr Chverrde 1 - =
P prb o Ee N]
o o= i P it 5-Thre
S Sawtoctr .
OS5 T
& 20 Othwr 0
& 20 System :
& 20 vardas_sepirgia -
1
" A
ERCEYC T 1+ »
1]
- teln

0.0 The Frecusrey of B s wave:

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Resource Guide: Chapter 4 Faults - Page 17

Override : MotoTune Help/Units 0

Help and Unit information for MotoTune user.

To display help and unit information for an override, right click
on the value, select “Properties / More” to view the help and
unit information.

17 vardee_mesmpisdFaregreundisampie 1 *

D& Led == ¢ c@ [= DesP@S REDT S

L] Black Farmmeders: motohswk_override s
Override : MotoTune Min/Max R | (7o | PlotoHanK Mol e e
In the PWM_ovr, a minimum and maximum was specified. e iomers 6 R PRORRTH T === e
In an attempt to calibrate the val ide of th Taroelsemnne | e sxieple R
pt to calibrate the value outside of the range, babtosk s Rt P 1 g = S
MotoTune will generate an error and inform the user it is i (S—
outside the specified range. B e
Useful to ensure a calibration is not accidentally changed outside of a range. e
i F==r) wms kb Paarrn -
l ; ._:.... e s Sonmcn [Lios bogas 'mrvs hisss =
[L i L [3]
Doy s Lt [£ =]
LT PR] Se— =
1 o s [l ey D]
[Feed, Vit

[T T e s ey -
Hls Pt
| ep————

Mol vk, Abciodue [vimde [madi] e

The Bk provdien & conrathon o Mol ure, and sltws undeae roshceton 02
ol arvaafy ol wae wls walt Hra ok Tunes 1560

59 ormaty b ko bsbaroms 53 8 tovcds pataumzh. Lsing Mkl uns, the szt 0%
i iy b e 5 8 s, b,) B g T

Ergresnng el = e Wl W aa Gl T b sl
Pt Helps him Faois mbimwalion

Comprght 2006 omTron. e, Al Righty Aeveresd.

Faawicrs
M
[t
e St Adkierinl P wmatasg e
Mg Soume | Uis Pasrsss
Plasd Azrans Lewsd | |
Dvminds Azewes Lawsd [1
Wi Vihae A [Musmbas
Erumansin [Cod Skng. o St 7 s s et o s
F"*;::’ i i
i . _ i dobeate
P — Shom Wi snd Has Viskoes — : =
M Ve
o
Missiam Vs
]
" —— Shew Mot Procision. G am D e Esoonent —
" Shom Mok faou —

[-
s byl
i

) i

Laf L] L]

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net MotoHawk Resource Guide: Chapter 4 Faults - Page 18

Override : MotoTu
Gain/Offset/Expo

MotoTuneValue = (value * gain)exponent + offset

Precision is specified as a string or a valid MATLAB expression
that returns a string in the format of width.decimal. The
decimal will take precedence if the number becomes larger
than the width specified on the left hand side of the decimal
and will always maintain the specified decimal precision.

The width is specified to be 3 with 1 decimal precision.
When the number is larger than 99.9, 1 decimal precision is maintained and
the number increases to a width of 4 to display 100.0. (Figl2)

If the vardec is writable like a calibration, and the value is
entered as 10.35, MotoTune would round the value up and
display 10.4 to maintain the specified decimal precision.
The rounding is merely for display purposes only and the value is actually
10.35. To see this you can change the precision in MotoTune to use 2
decimal precision and then the number would be displayed as 10.35.
Changing MotoTune precision from MotuTune is covered in the MotoTune
chapter.

Gain/Offset/Exponent is used to display and calibrate the
value differently than the actual use of the value down stream
of the calibration block.

The default value is 1, but the value will be multiplied and
scaled by the specified gain, offset, and exponent to be
displayed in MotoTune as 10.

When changing the value in MotoTune — the above equation
reverses.
In this case the value changed in MotoTune will be divided by 10.

ODFEHS Fae o pofil i Bebda nBm
[| GRETAN

Mot olgonk

MoteTron Ce

el s it
e mbent e TR

RT3
WA _SLImple
Exarnpm |

bk B P
i Dot V. poieding dewngng cadt

B b ok g 4 B b b s . ol 0., s e B

il micieny by 4 oo 1 nay ol shon e
i Lo v o B il

R e il

! watdee_sumnpied . Tamsge L Wave *

ke e | BMD®

REmT 4

[p—
B —— e i P ——

L

S v [|1 P

LN 1T T [Ty ———
Font b Lo [1

e s Ll | 1
e T

Lad (&4 Lof 1]

et s b
A gl el Lo Y

L4}

T
= Y it | o ey el gty —

b i e g W

Tk e . L it —

e

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net

MotoHawk Resource Guide: Chapter 4 Faults - Page 19

Override : MotoTu
This is a valid Matlab expression that returns a string with
folders separated by the vertical bar. By default this value runs
a function called motohawk_vardec_path(gcb). The location of
each vardec will be the same as the model.

If you turn on Simulink’s Model Browser, you will notice the
similarity of the model browser’s tree and the MotoTune
tree with the vardecs that have not yet been put into their
respective MotoTune Groups.

The default value for the MotoTune group is good for developers that are

familiar with the code. To make it easier for calibrators, test engineers, or
other individuals who will use MotoTune, but is unfamiliar with the actual

code, you will want to specify a better, easier to use, layout.

You can also specify your own string with the MotoTune folders
separated by the horizontal bar.

Pofi e WA RGm w@@Te
- ¥t | o
W i A ConeC T Mot oHauk
o B i b e O LA
] rasmen 1 TR rarae e = —hH
B e s BRSSP RO s [bl P
el | 2 A sercbE TR
o B Dagh? e e o 1 v iy e e e Hient
L L reheny Sy iV
e i Fo sy e
B ek L e
e s s f— =
5 Nemuid g
B! Dk sy =| "
;::: S— [k T [=
3 Buret R ——_— e =l
S] =
v e [e =
£ e Lomien Baf iy, = e
e ——— ety
[yt) g L o s —
— e il b Vit —
e e L P T e
R] B
Pk | P
& [>] o | g | e |
|Feate Fle T

Phone: 877.234.1410 support@eneweagle.net www.neweagle.net MotoHawk Resource Guide: Chapter 4 Faults - Page 20

	NewEagle_MotoHawk Resource Guide - Cover
	New Eagle MotoHawk Training Supplement_web
	NewEagle_MotoHawk Resource Guide - ch1 Intro
	NewEagle_MotoHawk Resource Guide - ch2 Faults
	NewEagle_MotoHawk Resource Guide - ch3 CAN web
	NewEagle_MotoHawk Resource Guide - ch4 Memory

