

M E C H A T R O N I C C O N T R O L S O L U T I O N S

CONTACT INFORMATION

Let us know how we can help!

To contact us by telephone, please call 877.234.1410

To request a quote, please contact quotes@neweagle.net

For New Eagle orders, please contact orders@neweagle.net

Product and tools support

http://www.neweagle.net/support/wiki/

support@neweagle.net

Agenda	 2

Software Requirements	 3

Training Project System Overview	 4

Training Project Block Diagram	 5

Controller I/O Acronyms	 6

Controller Hardware Layout	 8

Vardec Parameters	 9

Calibration Management	 12

Analog Input	 14

PWM Output	 15

Fault Management	 16

TRAINING SUPPLEMENT

 MotoHawk Training Supplement - Page 2

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

DAY 1 DAY 2 DAY 3

Morning

Introduction

Software installation

Basics of MATLAB/Simulink & MotoHawk

Simple Simulink model

First build, kit setup, and flash

Basics of MotoTune

Fault management

Throttle project: Faults

Throttle project: PID control

Throttle project: CAN

Libraries

Components

Afternoon

Triggers

I/O

Calibrations, probes, & overrides

Throttle project: I/O

Data storage

Throttle project: Data storage

CAN

New Eagle hardware & software offerings

Questions

Evaluation

Basic MotoHawk Training Agenda

 MotoHawk Training Supplement - Page 3

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

The following software will be installed DURING training.

	 MotoHawk

	
	 MotoServer/MotoTune*
	 *With MotoHawk 2010aBeta6 and later, MotoServer/MotoTune 8.13.7.120 or later is required
	 *With MotoHawk 2009bBeta1 and later, MotoServer/MotoTune 8.13.7.87 or later is required

	 GCC (compiler)*
	 *MotoHawk 2009bBeta2 or later is required

	 CANKing

Software Requirements
Welcome to MotoHawk training! Presented by New Eagle, this
three day course will train you to create a real-world application
with Simulink and MotoHawk, program a module, and calibrate
in real-time using MotoTune. But first things first, let’s make sure
you have the correct software on your laptop.

The training requires several software installations involving a
somewhat complex compatibility maze. The following lists the
software requirements and any relevant compatibility notes.

Please install software in the order listed PRIOR to training.

Windows
If Windows installation is 64bit, MotoHawk 2010aSP0 or later is required

MathWorks

Required installations*

	 - MATLAB**
	 - Simulink
	 - Real Time Workshop
	 - Real Time Workshop Embedded Coder
	 - Stateflow (optional, but highly recommended)
	 - Stateflow Coder (optional, but highly recommended)

*Required before training (MathWorks distributes trial downloads and licenses)

**If MATLAB installation is 64bit, MotoHawk 2010bSP0 or later is required

With the installations above complete, you’re system is prepared to
work with the MotoHawk Tool Suite.

The necessary software for the MotoHawk tools and a temporary
license will be provided at training.

 MotoHawk Training Supplement - Page 4

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Training Project System Overview

 MotoHawk Training Supplement - Page 5

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Training Project Block Diagram

B-20

B-21

B-07

B-06

B-14

B-13

ECUP

BATT

DG1M (10KPU), VR1+ or DG1M (51K1PD)

XDRP

XDRG

AN1M (220KPD, 100PU)

AN8M (220KPD)

AN9M (220KPD)

AN10M (220KPD)

AN11M or DG3M (220KPD, 1KPU)

MPRD

DRVPA

LSO1

LSO2

LSO3

LSO4

LSO5

Connected to B-23, LSO6

LSO7

H1+

H1-

B-22

B-08

B-05

B-04

B-16

B-15

B-24

B-01

B-02

B-03

B-10

B-11

A-10

A-11

A-09

A-12

B-09

B-12

B-18

B-19

A-15

A-21

A-20

A-02

A-13

A-07

A-08

A-14

A-05

A-23

A-01

A-17

DRVGA

DRVGB

A-16

B-17

CAN1+

CAN1-

FROM
BATTERY +

TO
BATTERY -

30A FUSE

MAIN POWER
RELAY

DRVPB

A-22

DRVGC

A-24

HSO1

HSO2

A-04

A-18

STOPB-23

AN17M (220KPD), VR1-

DG2M (10KPU), VR2+ or DG2M (51K1PD)

AN18M or DG8M (3KPD), VR2-

AN2M (220KPD, 100PU)

AN3M (220KPD, 1KPU)

AN4M (220KPD, 1KPU)

AN5M (220KPD, 51K1PD)

AN6M (220KPD, 51K1PD)

AN7M (220KPD, 51K1PD)

AN12M or DG4M (220KPD, 1KPU)

AN13M or DG5M (3KPD)

AN14M or DG6M (3KPD)

AN15M (220KPD, 1KPU)

AN16M or DG7M (3KPD)

CAN2+

CAN2-

CAN3+

CAN3-

A-06

A-03

A-19

TERMINATION
RESISTOR

TO
COMPUTER

USB-
TO-
CAN

JU
N

C
TI

O
N

 B
O

X

C
D

K
J

W54, RED

W49, RED

W58, BLKGCM-0563-048-0801
GCM-0563-048-0802

A
B

K
J

F
E

G
H

KEY
SWITCH
BUTTON

A
F

C
D

K
J

W59, RED

W26, TAN

W27, YEL

W34, ORG-BLK

W35, BLU-BLK

W10, GRY

W11, DKBLU

W09, TAN-LTBLU

W12, DKBLU-WHT

W33, GRY-RED

W36, WHT-ORG

W42, PPL

W43, TAN-PPL

W15, BLK-YEL

W06, BLK-RED

W03, YEL-BLK

W19, ORG

W29, RED-PNK

W28, DKBLU-PNK

W40, GRN-RED

W39, GRN-YEL

W48, PPL-YEL

W25, BLK-ORG

W04, WHT

W18, PNK-BRN

W02, PNK-ORG

W13, WHT-LTBLU

W07, YEL-ORG

W08, LTBLU

W14, WHT-BLK

W05, WHT-DKBLU

W23, RED-BLK

W20, ORG-WHT

W21, BLK-BLU

W22, YEL-PPL

W16, BLK-WHT

W24, BLK-WHT

W41, BLK-GRN

W53, RED W51, RED

W52, RED

W38, ORG

W37, GRN

W31, YEL

W30, BRN

W44, WHT

W45, BLU

W46, RED

W32, BRN-WHT

W47, BLK-YEL

W57, BLK

W56, RED
W61, RED

W60, RED

W62, RED

W63, RED

W64, RED

W55, RED

NORMAL
5A FUSE

BOOT
5A FUSE

A
B
E

BOOT KEY
(IF NEEDED)

APP

TPS

FUEL
INJECTOR

ETC
MOTOR

W01, PNK-LTBLU

W17, PNK-PPL

 MotoHawk Training Supplement - Page 6

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

GCM-0563-048-0801
GCM-0563-048-0802

Acronym : …Literally Means : Other Notations : General Notes :

BATT BATTery ~180mA at 13.8V (module only, no external loads); connected directly
to battery+; low-current power to analog/digital core of module; allows
controlled shutdown

ECUP ECU Power KEYSW, WAKE ~5mA at 13.8V; derived (through switch) from battery+; ”wake-up”
signal to module to initiate execution of software algorithm (when power
removed, operations continue until software commands a shutdown)

STOP Emergency STOP ESTOP when asserted, disables the main power relay through hardware (on
other modules, may disable engine-related outputs such as EST and
FUELP); input for boot mode signal

DRVPx DRiVer Power DRVPWRx through MPR, provides battery+ to actuators; internally provides power to
H-bridges (allows controlled shutdown on modules without BATT)

DRVGx DRiVer Ground GNDx, PWRGRNDx connected directly to battery-

XDRPx TRANSDuceR Power XDRPWRx 300mA maximum; 5V reference for sensors

XDRGx TRANSDuceR Ground XDRGNDx internal connection to DRVG; low reference for sensors

ANxM ANalog sensor input Monitor ANx has a pull-up and/or pull-down internal resistor; time constant through
an internal capacitor and additional internal resistor

DGxM DiGital sensor input Monitor DGx same as analog sensor input monitor, but may also resolve frequency

VRx+, VRx- Variable Reluctance sensor input typically used to resolve frequency (on other modules, used to resolve
engine crankshaft position)

MPRD Main Power Relay Driver controls the main power relay

LSOx Low-Side driver Output LSDx connection to DRVG through transistor; PWM capable

HSOx High-Side Output HSDx connection to DRVP through power switch; PWM capable

Hx+, Hx-, H-Bridge output HBxA, HBxB, ETCx,
HBRIDGExA, HBRIDGExB

on some modules, can also be operated independently as low-side or
high-side driver outputs

CANx+, CANx- Controller Area Network communication CAN 2.0B protocol

Controller I/O Acronyms

 MotoHawk Training Supplement - Page 7

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Common Acronyms
Found On Other Modules:

Acronym : …Literally Means : Other Notations : General Notes :

GNDREF GrouND REFerence ground reference signal

CNK+, CNK- CraNKshaft encoder sensor input CNKVR+, CNKVR-,
CNKDG

typically used to resolve engine crankshaft position (with variable
reluctance and/or digital sensor inputs)

CAM+, CAM- CAMshaft encoder sensor input CAMDG typically used to resolve engine camshaft position (with variable
reluctance and/or digital sensor inputs)

SPDx, SPD- SPeeD (frequency) sensor input SPEEDx typically used to resolve frequency (with variable reluctance and/or
digital sensor inputs)

EKxP, EKxN Engine Knock sensor input KNKx+, KNKx- used with wide-range piezoelectric knock sensors

EGOxP, EGOxN Exhaust Gas Oxygen sensor input dual differential amplifier targeted at lambda oxygen sensor signal
processing

HEGOx Heated Exhaust Gas Oxygen sensor input O2x+, O2x- used with switching type oxygen sensor (heated or unheated)

LSUxUN, LSUxIA, LSUxIP,
LSUxVM

Lambda Sensing Unit sensor input used with the Bosch CJ125 exhaust gas oxygen sensor

INJx fuel INJector driver output FINJx, FIx low-side output to drive high-impedance fuel injector

ESTx Electronic Spark Timing output 5V signal to drive logic level (“”smart””) ignition coil;
on some modules, may be used as additional analog inputs

EST RTN EST ReTurN reference level for logic level (“smart”) ignition coils

FUELPR FUEL Pump Relay FUELP low-side output to drive fuel pump relay

BATT_OUT BATTery OUT supply voltage for external input devices

TACH_LINK TACHometer output or LINK interface tachometer output or LINK serial interface

SCL+, SCL- Serial Communication Link RS-485A, RS-485B RS485 serial communication link

ISO9141K, ISO9141L ISO9141 communication link ISO9141 communication link

Controller I/O Acronyms (continued)

 MotoHawk Training Supplement - Page 8

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Controller Hardware Layout

Inputs	 Analog, discrete,
frequency, crank/cam and
corresponding resource
circuitry

A/D Converter For analog inputs, converts
voltage into ADC’s

MIOS Modular Input/Output
System, asychronous (non-
angle-based) operations only

TPU Time Processing Unit,
synchronous (angle-based) or
asynchronous operations

CAN Controller Area Network
communication

Serial RS485 serial communication
(RS232 on some modules)

RAM Random Access Memory,
volatile variable, stack, and
heap storage

Flash Constant data and
executable code

Serial EEPROM Electrically-Erasable
Programmable Read-Only
Memory; nonvolatile variable
storage

External RAM Select modules only; same
as RAM above (but slower)

Parallel
EEPROM

constant variable storage,
calibration in development
units only

Outputs Circuitry to drive the following
outputs: discrete, PWM,
engine-specific (fuel injector,
EST), H-bridge, low-side
output, high-side output

Component Descriptions

Vardec Parameters
Vardec — a global variable declaration.
Vardecs are unique by name and are created by numerous MotoHawk
blocks, such as calibrations, probes, look-up tables, and data definitions.
Below are common mask parameters found with MotoHawk vardec blocks.
Note that not all of the mask parameters below are available for each vardec.

Name — The name of the vardec.
Must be unique among all other vardecs in a MotoHawk model.

Initial Value — The initial value of the variable. The dimensions of the
initial value set the size of the variable. For instance, if the initial value is
set as zeros(5), the variable is a 5x5 matrix. If the initial value is set as [0
1 2 3], the variable is a vector of length 4. Or, if the initial value is set as
½, the variable is a scalar.

Behavior — The display and storage behavior of the variable.

Storage Class — The storage class of the variable.

Output Data Reference — Option to output a reference signal pointing
to the variable. For instance, this outport signal could be connected to a
MotoHawk Data Read block to expose that variable for use downstream in
the application.

MotoTune Window — Option to set the variable as a calibration (i.e.,
appear in a .cal file) or a display (i.e., appear in a .dis file).

Name Source — Option to define the vardec name by the Parameter
(using Name mask parameter above) or Output Wire Name (using the
name of the output wire).

Data Source — Option on how to define the data source. Lookup By
Name uses the Data Name mask parameter, Input Reference Signal
provides a reference inport, Lookup By Name In Structure uses the Data
Name mask parameter in conjunction with the name of the structure, and
Lookup By Name In Structure Via Reference uses a reference inport in
conjunction with the name of the structure.

Data Structure — The dimensional structure of the variable.
If Vector or Matrix is selected, additional options are provided to Read/
write scalar from location by index (zero-based) or Read entire data
structure at once; if the latter is selected, the dimensions of the vector/
matrix must be explicitly specified.

Behavior Description

Calibration On a development module, stored in parallel EEPROM.
On a production module, stored as a constant in flash (can only be
changed through reflash).
Viewed as calibration in MotoTune.

Display Stored in RAM.
Viewed as display variable in MotoTune.

Calibration NV Stored in serial EEPROM (shadowed in RAM).
Viewed as calibration in MotoTune.

Display NV Stored in serial EEPROM (shadowed in RAM).
Viewed as display variable in MotoTune.

 Storage Class Description

Constant On a development module, stored in parallel EEPROM.
On a production module, stored as a constant in flash (only can be
changed through reflash).

Volatile Stored in RAM.

NonVolatile Stored in serial EEPROM (shadowed in RAM).

Fixed NonVolatile Stored in serial EEPROM (shadowed in RAM) (attempts to maintain over
programming cycle).

 MotoHawk Training Supplement - Page 9

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Vardec Parameters (continued)

Output Data Type — The data type of the signal originating from the
output port. The Inherit from ‘Default Value’ option evaluates the data type
of the default value to set the block’s data type (e.g., the data type can be
explicitly specified as uint8 by entering the default value as uint8(100)).

The Inherit via back propagation sets the data type to that governed (where
applicable) by other connected Simulink/MotoHawk blocks. Otherwise,
the data type can be explicitly specified as an integer or floating point data
type.

Read and Write Access Level — Option to set security level on read/write
access from MotoTune (1 is the lowest, 4 is the highest security level). The
user’s security level is the minimum of the MotoServer communication
port setting and the license dongle setting. A security level of 4 is required
to create a new MotoTune online calibration; however, any security level will
allow the creating of a new MotoTune online display.

After opening (previously created) MotoTune calibrations/displays,
individual calibration/display variables will allow read/write access if the
security level set in the MotoHawk block is equal to or less than the user’s
security level.
Note that, for variables with both read and write access, the read access level must be
equal to or less than the write access level.

Use uploaded calibration values from MotoTune
Option to use or ignore values input from MotoTune.

View Value As — Option as to how the engineering value is displayed in
MotoTune. The Number option displays the engineering value numerically.
The Enumeration option displays an associated enumeration; for example,
if the Enumeration (Cell String, or Struct) is {‘State 1’, ‘State 2’, ‘State 3’}
and the numeric engineering value is 1, then “State 2” will be displayed in
MotoTune.
Note that this option is only applicable with Boolean or integer data types and that the
enumeration definition indices are zero-based.

The Text option displays the ASCII character interpretation of the value;
for example, if the engineering value is a vector with values [35 63 106],
MotoTune will display “#?j”.
This option may only be used with a uint8 data type.

Show Vectors As — Option to display (in MotoTune) the vector as a Wide
Row or a Tall Column.
This is only applicable if the variable is a vector.

Data Type Size (bytes) Min. Max. Resolution

double 8 -inf inf depends on magnitude

single 4 -inf inf depends on magnitude

int8 1 -128 127 1

uint8 1 0 254 1

int16 2 -32768 32767 1

uint16 2 0 65535 1

int32 4 -2147483648 2147483647 1

uint32 4 0 4294967295 1

boolean 1 0 1 1

reference 2 for S12,
4 for other

n/a n/a n/a

struct inherits data types from fields in structure declaration

struct container dependent on number of structure instances associated with container;
inherits data types from fields in structure declaration

struct reference 2 for S12,
4 for other

n/a n/a n/a

 MotoHawk Training Supplement - Page 10

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Minimum Value — The minimum allowable value for the variable. This will prevent a user
from entering an out-of-range value from MotoTune.
This value is in engineering units (i.e., after the gain, offset, and exponent have been applied).

Maximum Value — The maximum allowable value for the variable. This will prevent a user
from entering an out-of-range value from MotoTune.
This value is in engineering units (i.e., after the gain, offset, and exponent have been applied).

Precision — The precision of the variable as displayed in MotoTune. Enclose the precision
between single quotation marks using the syntax ‘0.DecimalPlaces’. For instance, if the
variable has a value of 98.76543 and the precision is ‘0.3’, the value would appear in
MotoTune as 98.765. The default precision of ‘’ will display 2 decimal places.

Gain — The gain applied to the raw value to calculate the engineering value as observed in
MotoTune.

Offset — The offset applied to the raw value to calculate the engineering value as observed
in MotoTune.

Exponent — The exponent applied to the raw value to calculate the engineering value as
observed in MotoTune. The MotoTune gain, offset, and exponent are applied according to the following:

(engineering value as displayed in MotoTune) = (Gain * (raw value))^Exponent + Offset

MotoTune Group String — The folder name and hierarchy that contains the variable in
MotoTune. Enclose the MotoTune group string between single quotation marks, and use the
| character to delineate subfolder structure.

For example, if the MotoTune group string for Calibration1 is specified as ‘Group1 |
Subgroup1 | Subsubgroup’, the variable will be found in MotoTune in the following:

Vardec Parameters (continued)

Help Text — A description of the variable to be displayed in MotoTune.
Enclose the help text between single quotation marks.

Units — The engineering units of the variable to be displayed in MotoTune.
Enclose the units between single quotation marks. For example, the help
text and units for a group of calibrations may appear in MotoTune as:

Row Header Enumeration (Cell String, or Struct) — Headings for the
rows of the variable to be displayed in MotoTune. A row header is only
applicable if the variable is a column vector or a matrix (i.e., the heading is
for the rows). Specify the headings in a cell string format.

Column Header Enumeration (Cell String, or Struct) — Headings
for the columns of the variable to be displayed in MotoTune. A column
header is only applicable if the variable is a row vector or a matrix (i.e., the
heading is for the columns). Specify the headings in a cell string format.

For example, if the row header enumeration is specified as {‘Row 1’, ‘Row
2’, ‘Row 3’} and the column header enumeration is specified as {‘Col 1’,
‘Col 2’, ‘Col 3’}, the variable will be seen in MotoTune as the following:

 MotoHawk Training Supplement - Page 11

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

 MotoHawk Training Supplement - Page 12

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Calibration Management

MotoHawk/MotoTune Files

.mdl The Simulink model file containing the MotoHawk application. This
typically exists in a project directory, which also has other MATLAB files to
complement the application, such as function files, .m files, library files, etc.

.srz The compiled executable file. This is the file created during a model build
(CTRL-B) and programmed onto the module. By default, saved in C:\ECUFiles\
Programs.

.dll A dynamic link library file also created during the model build (CTRL-B).
In summary, a vardec memory mapping; the correct .dll file is needed to view a
calibration or display file. By default, saved in C:\ECUFiles\TDBDLL.

.cal A calibration file created in MotoTune. Contains calibration values, help
descriptions, units, etc. By default, saved in C:\ECUFiles\Cals.

.dis A display file created in MotoTune. Contains an Excel-like display layout,
help descriptions, units, etc. By default, saved in C:\ECUFiles\Displays.

.log A log file created in MotoTune. Contains logged data with date, time, and
value names. By default, saved in C:\ECUFiles\Logging.

Calibration Management

There are several methods of calibration management
within the MotoHawk and MotoTune software.

A. Maintain the calibrations in the model. (Optional)
The engineer inserts correct calibrations into the default values of the
vardec blocks. Benefits of this approach are:

�the engineer can easily run the model in simulation and perform
software-in-the-loop development.
�maintaining the calibrations in the model means the application
is ready to run with simply a model build; no additional steps are
necessary.

The downsides to this approach are:
	 �online calibration changes need to be manually and tediously

transferred into the MotoHawk model.
	� this approach neglects the useful calibration management tools that

MotoTune provides.

B. Maintain the calibrations in a .cal file. (Recommended)
The proper and recommended approach is to maintain the calibrations
in a .cal calibration file. MotoTune offers several tools for calibration
management. Although there are several different procedures that can be
used to update calibrations from one build to another, the recommended
approach is to merge the desired calibration values into the new .srz
build. Then, upon programming, the application begins execution
immediately with the correct calibration values.

This merge process is described below:

1. Build the new software.
	 From the MotoHawk model, press CTRL-B to build the new software.
	 The result is a New.srz and New.dll.

2. Create a calibration file.
	 In MotoTune, select File/New/Calibration From Programming File.
	 Select the latest build New.srz, and save as New_000.cal.
	� This calibration file is created offline and contains the default values from the model,

as it was created from the .srz build file.

	 Close the .cal file for the next step.

 MotoHawk Training Supplement - Page 13

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

3. Transfer/upgrade calibrations.
	� The Transfer/Upgrade tool transfers calibration

values from an old .cal file to a new .cal file.

	� In MotoTune, select File/Transfer/Upgrade, or press the Transfer/
Upgrade icon.

	� For Source, select the file which contains your desired calibrations
(e.g., Old.cal).

	 For Target, select New_000.cal.

	 Press Start and take note of any differences outlined in the report.

	� Then, save the new calibration file, overwriting as New_000.cal (or
select a new descriptive name).

4. Merge into the new build file.
	 Open the New_000.cal file offline.

	 Right click, and select Merge. Then select the New.srz.
	 Note the differences from the default calibration values.

	� Change the name to indicate a merged .srz (e.g., NewMrg000.srz),
and save.

5. Program the module.
	� Program the module with NewMrg000.srz, which has the newest

software functionality with the proper calibration values.

Calibration Management (continued)

 MotoHawk Training Supplement - Page 14

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Analog Input

 MotoHawk Training Supplement - Page 15

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

PWM Output

PWM stands for Pulse Width Modulation

A PWM signal s a square signal that has 3 defining properties:
	
	� Amplitude (A), in Volts. Amplitude is set by the voltage source (e.g. DRVP), which

is typically fairly constant.
	
	 Frequency (f = 1/T), in Hertz.
	�
	� Duty cycle (DC = TH / T), in %. The duty cycle is the percentage of the signal that

is non-zero (when analyzed over 1 cycle.)

When used to control an output, the combined electrical and mechanical response
of the actuator results in an effective average voltage (this is a more efficient method
of controlling power than with resistive methods).
The PWM frequency is matched to the actuator to minimize oscillations.

A PWM-driven output can also be used in conjunction with a low-pass electrical filter
to produce an analog voltage, where the duty cycle is proportional to the voltage.

PWM Block

 MotoHawk Training Supplement - Page 16

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Fault x/y setting 3/5

cycle number -> 1 2 3 4 5 1 2 3 4 5

ke
y

cy
cl

e

1 2 3 4 5

fault behavior Fault input -> 0 1 1 1 0 0 0 0 1 1 0 1 0 0 0

enabled Fault status -> … S S A A A A A O O … S … … …

sticky Fault status -> … S S A A A A A A A … S … … …

save-occurred Fault status -> … S S A A A A A O O O S O O O

sticky-persistant Fault status -> … S S A A A A A A A A A A A A

Fault Management

S = Suspected

A = Acted

O = Occurred

 MotoHawk Resource Guide: Chapter 1 Intro - Page 1

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

MotoHawk makes it possible to run a Simulink model on a Woodward module.

MotoHawk allows you to access the Inputs and Outputs of the modules, schedule when to
execute tasks, manipulate the memory usage of the module, create a calibration interface,
and most importantly, allows a single step build of the entire application.

MotoHawk extends Simulink and Real-Time Workshop Embedded Coder to generate code
necessary to interface with the resources of the modules and control their behavior.

The goal of MotoHawk is to let the user concentrate on solving the control problem
rather than solving the programming problem. Programming an embedded module is
notoriously difficult both in terms of coding as well as actually transporting the application into
the module during reprogramming. MotoHawk addresses all of this to make the stuff that should
be easy actually easy. Unfortunately, the difficult part of conjuring up the magic to control your
engine or vehicle is still complex. MotoHawk just makes it simpler to implement the magic.

About MotoHawk

“...the difficult part of conjuring up the magic to control your engine or vehicle 	
 is still complex. MotoHawk just makes it simpler to implement the magic.”

CHAPTER 1 : Intro to MotoHawk
About MotoHawk� 1

ECM565-128 Developer’s Kit � 2

System Requirements� 3

MATLAB™ Installation Procedure� 3

Green Hills Software� 4

Obtaining A License For Your MotoHawk Compiler� 4

MotoHawk™ Installation Procedure� 5

Creating an application in MATLAB™� 6

Building Your Application� 7

Assembling Your Kit� 8

Starting MotoTune� 8

Checking MotoServer� 8

Programming the Module� 8

The Program ECU status pop up appears� 9

Creating A Display� 9

Checking Operation� 10

First Application� 10

Generating Embedded Code� 10

Introducing a Gain Stage� 14

MotoHawk Data Storage Blocks� 15

MotoTune Options� 16

Calibration and Probing Blocks� 17

Gathering data� 17

Throttle Control Challenge� 21

Pin Number & Signal Name� 21

Fault Detection on Throttle Pedal� 23

 MotoHawk Resource Guide: Chapter 1 Intro - Page 2

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

13

12
11

10

7

2

9 815 3
1

4

5

9

14

6

ECM565-128 Developer’s Kit

1.	 ECM565-128 Development Module

2.	 ECM565-128 MotoHawk™ Harness

w/Main Power Relay and fuse

3.	 Power Switch Asm. w/SmartCraft™ Connector

4.	 SmartCraft™ to dual DB-9 Adapter (GMLAM)

5.	 SmartCraft™ to dual J1939 Adapter

6.	 10’ SmartCraft™ cable w/terminating resistors

7.	 10’ Smartcraft Cable

8.	 SmartCraft™ terminating connector

9.	 6 port SmartCraft™ hub (2)

10.	 Optically isolated 4 port USB hub

11.	 USB to dual CAN Adapter

12.	 Green Hills Software MULTI2000™ compiler*

13.	 Software Installation CD*

14.	 Security Dongle*

15.	 Boot Key

16.	 MotoHawk™ Resource Guide (this manual)

*Green Hills Software, Security Dongle programming, and applications
included on Software CD are subject to your specific order and may not
be included in this shipment.

 MotoHawk Resource Guide: Chapter 1 Intro - Page 3

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

System Requirements

1. Windows XP (any SP,) Windows 2000 (SP3 or SP4)
Windows NT (SP5 or SP6a)

2. Pentium III or IV, Xeon, Pentium M, AMD Athlon,
Athlon XP, Athlon MP

3. 345 MB disk space
4. 512 MB RAM (1 GB or more recommended)
5. 16, 24, or 32 bit OpenGL capable graphics adapter

(strongly recommended)
6. Microsoft Windows supported graphics accelerator card,

printer, and sound card
7. 1400x1050 display (min)

(1600x1200 strongly recommended)

MATLAB™ Installation Procedure
Insert CD in drive. If the installer does not start automatically,
click Start/Run and double click on Autorun.exe.
Follow the instructions on the screen.

Note: If you have a network license for your installation you will need to
obtain a demo license from The Mathworks before arriving for training.

Install all of the following:
	

	MATLAB
 	 Simulink
 	 Real Time Workshop
 	 Realtime Workshop Embedded Coder

It is strongly recommended that you also install:
 	

	Stateflow
 	 Stateflow Coder

 MotoHawk Resource Guide: Chapter 1 Intro - Page 4

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Green Hills Software
Insert CD in drive. Click Start/Run and double click Setup.exe.
Follow on-screen instructions.

Obtaining A License For
Your MotoHawk Compiler
Once you have completed installation of the compiler on
the unit that you will be using to develop your application,
you must generate a request for a license.

Select Programs/MULTI2000,PowerPC v3.6/
Licensing/License Request Generator.

Select OK at the following screen.

Each MotoHawk SDK includes one node locked license.
Contact your sales representative if more are desired.

Indicate which type of computer you have installed
the compiler on and select Next.

Initially, you will want to request an evaluation license — this will get you
up-and-running quickly.

Select Next.

The next message window contains the License Agreement.
Read it, then select Yes to continue.

You must accept License Agreement in order to use the compiler.

The next window contains the license request.
Print or Save To File, then Send it.

(An evaluation license will be sent to the e-mail address indicated
in the Customer Information window, usually the same day.)

Follow the instructions that accompany the license file.

A hard copy of the License Agreement was included with your
SDK.
FAX a signed copy to (805)965-6343, Attn: Mickey Neal.

A permanent license will be e-mailed to the address
indicated in the Customer Information window
(usually the next business day.)

 MotoHawk Resource Guide: Chapter 1 Intro - Page 5

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

MotoHawk™ Installation Procedure

Go to http://mcs.woodward.com/ web site and register.

Have your instructor or sales representative upgrade
your access level.
(Log out and back in, once your access level has been updated.)

Navigate to the “Support/Downloads” section.

Install downloads in the following order:
	
	Kvaser Drivers
	MotoServer
	MotoTune
	MotoHawk
	

Follow installation instructions for each one.

Note: It is recommended that you do not plug the adapter cable
into the USB port prior to installing the Kvaser drivers.

It is also recommended that you download the CAN King
software — a useful tool when working with CAN networks.

Website Resources http://mcs.woodward.com

 MotoHawk Resource Guide: Chapter 1 Intro - Page 6

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Creating an application in MATLAB™
Once you have completed the installation of your software,
create a model to verify operation.

Start MATLAB: Double click on the MATLAB icon
on your desktop or select from the programs menu.

The following screen will appear.
At the command line
type: motohawk_project (‘MyFirstProject’)

Press the Enter key.
the following window will open
(Allow 1-2 minutes for the application to complete.)

Take note of the:
	
	Target Definition
	Main Power Relay
	Trigger blocks

These comprise a rudimentary system. The executable
algorithms reside in the Triggered Subsystem (Foreground.)

Default Application

 MotoHawk Resource Guide: Chapter 1 Intro - Page 7

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

The MATLAB window will look like this

Building Your Application
Press CTRL+B

The MATLAB window should look like this

If the message says “Successful MotoHawk Generation (No
Build,)”check your Greens Hills Compiler installation: Type
“motohawk_check_ghs” (a zero indicates that you have a
problem with your Green Hills Compiler installation.)

If you get an error, check with your instructor or e-mail the log file
(MyFirstProject.log in this example) to: MCSsupport@woodward.com.
A Technical Support Representative will contact you.

Once you have successfully built your default application,
open Windows Explorer and navigate to the C:\ECUFiles
directory.

You will see a number of subdirectories including Programs and
TDBDLL. These subdirectories contain, respectively, the .srz
and .dll files which are used by MotoTune to program the ECU.

 MotoHawk Resource Guide: Chapter 1 Intro - Page 8

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Assembling Your Kit
Install your isolated USB hub and apply power.

Insert your silver MotoTune dongle into the hub.

Connect the USB to CAN adapter and wait for Windows to
auto-detect it. When the New Hardware window appears
select “No, not this time” and click on next. Then, let Windows
automatically install the drivers.

Connect the Development Harness to the module
(see datasheet for proper positioning.)

Connect Power branch to a 12 volt source (9V to 16 V, 3A min.)

Attach the SmartCraft connector, USB to CAN adapter, and
the power switch to the 6 position hub.

Starting MotoTune
From the Start menu (or desktop shortcut) select
All Programs/MotoTools/MotoTune.

The following window appears
The name that was used to order your kit should appear at the top of
the window. If it indicates [Unlicensed,] then you need to insert/reinsert
the silver dongle.

Checking MotoServer
Right-click on the Satellite Dish icon for MotoServer.
(Located on the system tray.)

Select “Ports”.
If not already listed, Add location PCM‑1 as a CAN type port with Access
Level 4, check the box on the list, and click on “Apply”.

You are now ready to connect to the module.

Programming the Module
Turn power on and apply ECUP signal via power switch.

Select File/Program, in the MotoTune window.

The following pop-up appears
This is the file created when you pressed CTRL+B.

Double-click on the .srz file in the window.

 MotoHawk Resource Guide: Chapter 1 Intro - Page 9

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

The Program ECU status pop up appears
If the Program ECU status pop-up doesn’t advance to
Connecting, check your CAN to USB and SmartCraft connections.

If they are operational, turn power off. Install the BOOT KEY
from your kit onto the SmartCraft hub.
(ECU555-128 users will also need to move the fuse from the
Normal socket to the BOOT socket to insure boot loader is invoked.)

Double-click on the .srz file and apply power.
If this does not work, check with your instructor or send
an e-mail to: MCSsupport@woodward.com.

When you see the Programming Successful message,
you are ready to create a display for your application.

Creating A Display
In the MotoTune Window, select File/New/Online Display/
Calibration.

Select Display on the pop-up and click on OK.

The Create New Display window appears

Give your display a meaningful name (ie. MyFirstProjectDisplay.)

Select “Next” for default Row and Column settings.

Select “Next” for default Status Bar and Tab Control settings.

Use default Sheet1 by clicking on “Finish.”

The following should appear

Click on the “+” next to the MyFirstProject folder
(listed on left side of the MotoTune window.)

Open the:	 >Foreground folder
	>Controller folder
	>Plant folder

Double-click on the Foreground block in your
Simulink model.

Note the one-to-one correspondence between the MotoTune folders and the
subsystems in your model.

 MotoHawk Resource Guide: Chapter 1 Intro - Page 10

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Checking Operation
Open the System folder, then the Performance folder.

Drag each of the display variables onto the spreadsheet.
Note that your system is running — these are its vital statistics.

Cycle the power switch off, then back on.
Note that the display values briefly disappear, then return.
The Main Power Relay can be heard releasing and engaging.

Close this model by clicking on the red “X” in the upper right
hand corner.
You will be prompted to save the model. We are done with this one — you
may save or not.

First Application
Click the Simulink icon

Simulink’s Library Browser appears
These are the Simulink and MotoHaw blocks which, are used for creating
your application models.

In the MATLAB window, move up one level to the “work”
directory. Create a new directory “MySecondProject” and
double-click on it.

In the library browser, click here

A new model window opens.
Note the status window in the lower left hand corner.
It indicates ODE45 this stands for Ordinary Differential
Equation 4th and 5th derivative (Dormand-Prince method,)
which is the type of solver that will be used for simulations.

Generating Embedded Code
In order to generate embedded code we must
change to a fixed-step discrete solver as follows:

Select “Simulation” at the top of the window, then
“Configuration (or Simulation) Parameters.”

The following window appears

Using the pull downs, change Type to Fixed-step, and Solver
to Discrete (no continuous states.)

Simulink Icon:
located top of the MATLAB window.

 MotoHawk Resource Guide: Chapter 1 Intro - Page 11

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Click on Apply and OK.

In the library browser, click on MotoHawk. Drag the MotoHawk
Target Definition block from the bottom of the list into your
model. Double-click on the block and verify that the target
module is correct for your kit (80 pin, 128 pin, etc).
The Memory Layout should be DEV.

Click on Apply and OK.

From the Trigger Blocks library, drag a MotoHawk Trigger block
into your model. Double-click on the block to open the dialog
box and set the pull-down to FGND_RTI_PERIODIC.

Click Apply and OK.

From the Extra Development Blocks library, drag a
Main Power Relay block into your model.
(Default settings will serve our purposes for now)

From the Ports & Subsystems library drag a Function-Call
Subsystem block into your model. Double-click on this block
and a new window appears.

From the Sources library, drag the Sine Wave block
from the bottom of the list into your model.

Click on Sinks and drag a Scope block into your model
Click on Math Operations and drag in a Gain block.
Note the greater than (>) symbols on each block. These are Simulink ports,
which are used to control the signal flow through your model.

The Sine Wave block, being a signal source, has only one (output) port.
Likewise the Scope block, being a sink, has only one (input) port, while
the Gain block has one of each.

More complex blocks will have more input or output ports or both.

Select the Sine Wave block, hold down the CTRL key
and click on the Gain block
Notice how Simulink connects the two blocks. This technique can be used
to “wire” the blocks to one another and is especially useful when wiring
signals to or from consecutive ports on a block. Simulink will start at the
top and work down either side (in or out) of the block.

At the top level of your model, connect the trigger block to
the subsystem block. Select File/Save As. Give your model a
meaningful name (ie. MySecondProject) and click Save.

 MotoHawk Resource Guide: Chapter 1 Intro - Page 12

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Press CTRL + D.
Notice that Simulink has generated an error message and highlighted the
offending subsystem and block — informing us that “only constant or
inherited (-1) sample times are allowed in triggered subsystems.”

Double-click on the Sine Wave block to open its dialog box.
At the bottom of the dialog box the Sample Time is zero.
As you may have guessed this means continuous.

Change it to -1 (inherited.)
The subsystem will now inherit its sample time from the parent (level above,)
which is FGND_RTI_PERIODIC or 5 milliseconds.

Press CTRL + D again.
No error messages are generated.

Double-click on the scope — a pop-up window appears
complete with grid and axis markings.

Select Simulation/Start — a Sine wave appears.

Double-click on the Gain block, change to 100.
The small triangle in the middle of the window at the top can be used to start
the simulation. Note that the Sine wave has changed.

Click on the binoculars icon
This will scale the display for your input automatically. Clicking on the name
of the subsystem (Function-Call Subsystem) opens it for editing.

Change the name to “Foreground.”

Press CTRL + B
MotoHawk builds your application.

In the MotoTune Display Explorer pane, right-click on Display1
on [PCM-1.] Select “Save As” and give it a meaningful name
(ie. ”MyFirstProjectDisplays”). Use pulldown to specify the folder.
Note that while MyFirstProjectDisplays contains only MyFirstProjectDisplay,
it may contain others that provide different views into the system.

Right-click on MyFirstProjectDisplays and select Close.
Currently, this is the only way to close one display and open another in MotoTune.

Select File/Program and download MySecondProject into
the module. Create a new display as above.
(ie. “MySecondProjectDisplay.”)
Drag in your System Performance variables and note, via your
display and the Main Power Relay, that your application is running.

 MotoHawk Resource Guide: Chapter 1 Intro - Page 13

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Modifying the application
Allows you to gain some control over its operation.

Double-click on the Foreground block in your model, select the
Sine wave generator and the gain block, press the delete key
to remove these blocks.

From the Calibration & Probing Blocks library, drag a
motohawk_calibration block and a motohawk_probe block
into your model.

From the Extra Development Blocks library, drag in a
motohawk_abs_time block.

Double-click on the Calibration block and change the name to
‘TwoPi’ and value to 6.28318.
The single quotes must be used.

From the Math Operations library, drag in a Product block.
Double-click on it and change the number of inputs to 3.

Right-click on the TwoPi block and drag down.
A duplicate block is added to your model.

Double-click on the new block and change its name to “f”
and its value to 1.

Wire these 3 blocks to the inputs on the Product block.

From the Math Operations library, drag in a Trigonometric
Function block.
If it is not already set to Sine, change it.

Wire the output of the Product block to the input of the
Trigonometric Function block.

Wire the output of the Trigonometric Function
block to the Scope block.

Double-click on the Probe block and change its name to Sine.

Place the cursor over the input port of the “Sine” Probe block.
Notice that the cursor changes into a cross-hairs.

Click on the port and drag to the wire connecting the
Trigonometric Function block and the Scope.
A connection dot appears on the wire and a wire connects to
the Sine Probe block.

 MotoHawk Resource Guide: Chapter 1 Intro - Page 14

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Your model should look similar to this

Press CTRL + D (see that there are no errors.)

Press CTRL + B (verify that the build is successful.)

Close the display in the MotoTune Display Explorer pane as
above and program the module with your modified application.

Select File/New and create a new calibration.

In the Calibration Explorer pane, Click on the “+” next to the
MySecondProject folder.

Double-click on Foreground.
A Calibration sheet opens in the right hand pane of the
MotoTune window.

Create another display sheet and drag it down or to the side
such that both are visible.
You should be able to see the Sine value changing.

Right-click on the cell containing the Sine value and select
Properties. Click on Set Fast and verify that the Add to chart/
log box is checked. Click OK.

Select Chart/Open Chart.
A pop up appears displaying your Sine wave.

In the Foreground sheet change the “f” value to 2.
Note the frequency changes when the Enter key is pressed.

Change “f” to 0.5 – observe change in chart.
Occasionally, flat spots will appear on the chart – a result of Windows OS
“garbage collection” and other operations, and is no cause for concern.

Introducing a Gain Stage
Select the wire connecting the Trigonometric Function block
and the Scope and press the Delete key.

Right-click on the TwoPi block and drag a copy to one side.

Double-click on the new block and change the name to
‘Amplitude’ and the value to 10.

Likewise, copy over the product block and change its Number
of inputs to 2.

Method 1 — add a Gain block from the Math Operations library.

Method 2 — add a Product block from the same library and a Calibration block from the
MotoHawk library.

In the case of a Gain block; Real Time Workshop will allow us to change the Gain value
during simulation but our objective is to generate embedded code.
The RTW Embedded Coder treats a Gain block as a hard-coded constant which, precludes
changes at run-time. Therefore, we will use the second approach; an “Amplitude”
calibration block and a product block.

Two methods for introducing a gain stage

 MotoHawk Resource Guide: Chapter 1 Intro - Page 15

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Connect the new calibration block and the Sine block to the
product block inputs.

Wire the product block output to the Scope and Sine probe block.

Your model should look similar to this

Press CTRL + D and verify that there are no errors.
Then press CTRL + B to build it.

Program the module with the new application. Set up your display
and calibration windows in MotoTune as before.

Open a chart for the Sine probe and verify the amplitude value.
Now change the amplitude to 100.
Note that the display is rescaled for the new value.

If a Cosine signal of the same amplitude is also needed:

Hold down the Shift key and select the Amplitude,
Trigonometric Function, Product, and Sine Probe blocks from
the Right side of the drawing.

Right-click and drag down to copy them.

Wire the blocks together as before, connecting the input of the
Trigonometric Function to the output of the Product block on
the Left.

Change the Trigonometric Function to Cosine and rename the
Probe block accordingly.

Your model should look similar to this

Press CTRL + D.
Read the error message. Simulink is complaining that the name ‘Amplitude’
is not unique. We could rename this, but we know that the value is important
and it would be convenient to be able to re-use it. The way to do this is to use
the MotoHawk Data Storage blocks.

MotoHawk Data Storage Blocks
From the library, drag a motohawk_data_def block and
a motohawk_data_read block into your model.

Double-click on the motohawk_data_def block, change the
name to ‘Amplitude’, change the Storage Class to constant,
and verify that “Attach a VarDec for Visibility from MotoTune”
is checked.

 MotoHawk Resource Guide: Chapter 1 Intro - Page 16

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Highlight the two calibration blocks called “Amplitude” and
delete them.

Double-click on the motohawk_data_read block, change the
name to ‘Amplitude’, and drag it over to one of the loose wires
left by the previous deletion.

Right-click on the motohawk_data_read block and drag a copy
over to the other loose wire.

Press CTRL + D again.
No errors should be generated.

Build your model, program the module, and set up your
display and calibration windows as before.

(using the MotoHawk Data Storage blocks continued)

Right-click on either the Sine or the Cosine value and set the
properties to:

	>Fast
	>Add to chart/log
	>Apply to all

Click OK.

Select Chart, Open Chart and observe your signals.

In the calibration pane change the Amplitude value and
observe the changes in your signals.

For calibration values that are used in only one place in the model, the
motohawk_calibration block is a convenient means of introducing the
variable.

When a calibration is to be used in more than one place, a motohawk_data_
def block with motohawk_data_read blocks is best.

Read More

MotoTune Options
Selecting Attach VarDec for Visibility from MotoTune expands
the dialog box giving us more options.

Data Storage Blocks: A closer look

Double-click on the motohawk_data_def block.
A brief description of the block’s parameters appears at the top of the dialog box. In addition
to the variable’s name, initial value, and storage class, we can specify a data type (click on the
pull down to see them), and an Output Reference Data type (for pointer based operations.)

The Storage Class Parameter...
allows us to specify the type of resource that will be allocated for the variable.

Constant, as the name implies...
does not change unless a tool changes it.

Volatile...
will be re-initialized at power up.

Non-volatile...
will be preserved across a controlled shut-down/power-up cycle (when MPRD block or similar
construct is included in the model).

Attach VarDec for Visibility offers:

	a choice of which pane to view it in: Calibration or Display.
	the option to restrict Read and Write access level.
	whether to use uploaded calibration values from MotoTune.
	how to view the value: Number, Enumeration (on, off, running, stopped,) or Text.

Select the Help button at the bottom of the dialog box to view remaining options.

If the MPRD block is not used, a motohawk_store_nvmem must be included in a background
subsystem in order to execute the transfer to EEPROM (with the caveat that there are a limited
number of write cycles for the EEPROM devices.)

Also, when a revised model is downloaded to the module, the values stored in EEPROM will be
loaded into RAM unless the structure has changed or the RestoreNVFactoryDefaults function is
invoked from the System\NonVolatile Storage folder in the Display pane.

Example: You are adjusting calibration values and you decide to change the logic in
your module (ie. change a greater-than to a greater-than-or-equal-to.) You can rebuild the
application, reprogram the module, and pick up where you left off, without having to up-load
the calibration.

 MotoHawk Resource Guide: Chapter 1 Intro - Page 17

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Calibration and Probing Blocks
Another useful block is the motohawk_override_abs block
from the Calibration and Probing library.

Drag one into your model and place it over the wire connecting
the first product block to the trigonometric function blocks.

Note: Simulink breaks the wire, making the necessary connections.

Double-click on the block and give it a meaningful name
(ie. “Angle_Override”.)

Click on Apply and OK.

Press CTRL + D and CTRL + B.

Program the module and set up your Display and Calibration
panes as before.

Your model should look similar to this

Drag the two new parameters from the Foreground\Angle_
Override folder into the Display spreadsheet.

Start a chart for your Sine and Cosine waves.

Set Angle_Override_new to 3.14.

Click on the value for Angle_Override_ovr.
A pull-down arrow appears next to the cell.

Click on the pulldown and select override.

Look at your chart to see the effect of this change after
pressing Enter. As expected, the Sine value goes to 0 while the
Cosine value goes to -1.

The override is a display, not a calibration.

Read more

Gathering data
We have seen how a data definition block is used to introduce
a constant into the system. Now, look at how it can be used to
gather data from our system.

From the Ports & Subsystems library, drag in an enabled
subsystem and delete the scopes. Double-click on the

Display or Calibration... What’s the difference?

Displays allow the Engineer or Technician to monitor or manipulate signals in the system to
establish conditions necessary for testing or calibration.
The changes made via Display variables are not saved in the .dis file and so do not persist
past the MotoTune session.

On the other hand, Calibration changes are saved in a .cal file and can be Merged with or
Transfer Upgraded into another calibration (or .srz) file to create a new .cal (or .srz) file
which contains the desired changes.

 MotoHawk Resource Guide: Chapter 1 Intro - Page 18

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

enabled subsystem and a new window opens up.

Delete the output port and copy the input port by right-clicking
on port 1.

From the commonly used blocks library, drag in a constant
block and a sum block.

From the math operations library, drag in a math function block.

From the discrete library drag, in a unit delay block.

Right click to copy the constant block. Set the value of the new
(constant1) block to 200.

Double-click on the math function block and use the pull-down
to select mod (modulo) function. Click on Apply and OK.

Right click on the mod block and select format and flip block.
Likewise flip the unit delay and constant1 blocks.

Wire the constant and mod blocks to the sum block inputs.

Wire the output of the sum block to the input of the unit delay
block and the outputs of the unit delay and constant1 blocks
to the inputs of the mod block.

From the data storage blocks library, drag in a motohawk_
data_write block and make a copy of it.

Double-click on the first data write blocks. Name it SineData.
Using the pull down, set data structure to vector.*

Name the second data write block CosineData and make it a
vector* as well.

*�When you set up the Data Write Blocks as Vector, select ‘Write Scalar into
element by index”.

Wire the idx input of each data write block to the output of the
sum block.

Wire input1 to the data input of the SineData block and input2
to the CosineData block.

Your enabled subsystem should look like this

Save file and close this window.

In the Foreground window, right-click on the

 MotoHawk Resource Guide: Chapter 1 Intro - Page 19

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Amplitude data definition block and make two copies.

Double-click on the first copy, change the name to SineData,
change the Storage Class to NonVolatile, and change MotoTune
Window to Display.

Place the following in the Initial Value box: zeros (1,200.)

Click Apply and OK.

Double-click on the second copy, change the name to
CosineData, Storage Class to NonVolatile, and MotoTune
Window to Calibration.

Click Apply and OK.

Place the following in the Initial Value box: ones (1,200.)

Copy the ‘f’ calibration block and rename it.

Log and set the initial value to zero.

Wire the Sine signal to In1 and the Cosine signal to In2 of the
enabled subsystem.

Wire the Log block to the input at the top of the enabled
subsystem.

Your model should look like this

Press CTRL - D. If there are no errors, press CTRL - B.

Start MotoTune and create a new display and a new calibration.
In the display pane expand MySecondProject and Foreground.
Drag SineData into the worksheet.
Note that all of the values have been set to zero.

In the calibration pane, expand MySecondProject.
Note the folder and sheet of paper, both named Foreground.

Expand each to see their contents.
The folder contains the CosineData vector array (another sheet of paper). The
sheet of paper contains the scalar variables. Both have been defined in the
Foreground layer of the model and the default group string was used.

Confusing? Read more

Two ways to get around the confusion:
The first would be to utilize the Show MotoTune Group check box and explicitly name the
MotoTune Group String.

The other would be to place the data definition blocks in the enabled subsystem.

The system designer needs to decide what is the best way to organize these data
structures, a CTRL - B is required to generate a new DLL.

 MotoHawk Resource Guide: Chapter 1 Intro - Page 20

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

For now, double-click on the Foreground and the CosineData
sheets of paper and arrange them in the window.

Copy the “f” box and label it “Log”; set the value to 0.
Put the following in the initial value box of SineData:
“zeros (1, 200). That is one, comma, 200, not twelve thousand.

Do the same for CosineData.

Your window should look like this

Note that the CosineData array contains all 1s.

Changing the Log variable to 1 enables the subsystem that
logs the data.

The SineData array changes immediately, but the CosineData does not.

Select Calibration-Refresh Volatile Map (or press F5) and the
CosineData array is updated.

The Sine Data array may be used to examine the Sine values and can be
copied and pasted into a spreadsheet for analysis.

If there is no need to edit the values offline (factory defaults
are a good starting point for an adaptive algorithm,) the
Display variable will suffice.

If, however, the values are best customized based on which
variety of installations it will be used on, then the Calibration
variable is the one to use.

We are done with this example — you may close it.

 MotoHawk Resource Guide: Chapter 1 Intro - Page 21

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

	Pin Number 	Signal Name
	1 	 Motor-

	2 	 XDRG

	3 	 XDRP

	4 	 Motor+

	5 	 POT2

	6 	 POT1

Throttle Control Challenge
The following example uses a slider potentiometer and an
electronically controlled throttle assembly:

Table 1 lists the signals and their corresponding connector pin
numbers.

The Slider pot should be connected to XDRP, XDRG, and
AN1M.

POT1 and POT2 should be connected to AN2M and AN3M
respectively.

Consult the datasheet for your module to determine the appropriate wire
number for each of the signals.

At the Simulink command line, use the motohawk_project
instruction to open a new project. Name it ThrottleControl.

Double-click on the Foreground block and delete the Controller
and Plant blocks.

From the MotoHawk Analog I/O Blocks library, drag in a
motohawk_ain block.

Select “Allow I/O pin to be calibrated from MotoTune,” and
name the block ThrottlePedal.

Select AN1M from the pull down and click on “Apply” then
“OK.”

Drag in a Gain block and a motohawk_probe block.

Wire the ThrottlePedal block to the Gain block and the Gain
block to the motohawk_probe block.

Set the Gain block Gain to 100/1023.

Name your probe SetPoint.

Press CTRL - D.

Table 1: Electronic Throttle Connector Pinout

Electronic Throttle/Slider Potentiometer Schematic

 MotoHawk Resource Guide: Chapter 1 Intro - Page 22

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

In MATLAB 7.0, the following error message appears

MATLAB 7.0 supports a fixed point data type called ufix16_eng19 which
requires a separate license. Other versions of MATLAB will issue a data type
mis-match error. This is because MATLAB uses a default data type of double,
while the data type for a particular resource is dependant on the hardware.

In this instance, the A/D on the 555 is 10 bits, which fits into a unit16.

Other resources have the following data types:
	

	Digital Inputs and Outputs are Boolean
	Frequency Inputs and Outputs are uint32 (scaled by 0.01Hz)
	Duty Cycle Inputs and Outputs are int16.

Go to the top level of your model, double-click on the Target
Definition block and click on the “Floating Point Data Type”
pull down.

The choices are: 	 single (32 bits)
	double (64 bits)
	disabled

These determine the way that memory will be allocated during code
generation. The default is single (32 bits) and should not be changed
unless greater resolution is required or the target processor does not
support floating point operations.

Return to the Foreground level of your model and drag a Data
Type Conversion block in from the Signal Attributes library.
Place it between the ThrottlePedal block and the Gain block.

Press CTRL - D again.
There should be no errors reported.

From the Format menu select Port/Signal Displays and check
Port Data Types.
The data type appears adjacent to each wire. This is a convenient way to
verify that your data types are consistent in your model.

Make copies of the analog input, data type conversion, gain,
and probe blocks.

Highlight them and select Format-Flip Block (or CTRL - I).

Select AN2M for the analog input, name the probe Feedback.

Drag in a motohawk_pwm block from the Analog I/O Blocks
library and select H1 as the resource.

 MotoHawk Resource Guide: Chapter 1 Intro - Page 23

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Drag in a motohawk_calibration block. Name it ETC_
Frequency and set the Default Value to 5000.

To make a proportional control like the one shown, double-click
on the summing node and change the list of signs to |+|- .

Copy and modify the gain block and data conversion blocks.
When you first wire in your blocks, the data type adjacent to each wire will
indicate double (MATLAB’s default), but when you press CTRL - D they are
updated to indicate the appropriate data type.

Press CTRL - B to build your model and use MotoTune to
download it to the module.

Operate the Throttle Pedal slider and observe the behavior.

This model is a simple proportional control. Realistically, a
more complex control is required.

Fault Detection on Throttle Pedal
The next model introduces rudimentary fault detection on the
Throttle Pedal Position sensor and adds an integrating term to
the command signal. It also includes diagnostic probes and
calibratable Proportional and Integral gains.

Modify your drawing to look like the one shown.

Press CTRL - D to check your model.

Then build it using CTRL-B.

Open a display and a calibration in MotoTune. Set up your
probes and adjust the ETC_Frequency value until the high
pitched sound can no longer be heard.

Set the Integral Gain to zero and increase the proportional gain
until the throttle plate exhibits ringing when operated.

Open a chart and increase the Integral Gain until the traces for
SetPoint and Feedback come together.
The Error trace should be zero.

This value represents the difference, or
error, between the Throttle Pedal Value
and the actual Throttle Pedal Position.

 MotoHawk Resource Guide: Chapter 2 Faults - Page 1

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

	 This section covers the basics of faults within MotoHawk. FAULTS

Faults are used to indicate failures within a system.

For instance, if a sensor becomes disconnected, the application can detect this out of range
condition and signal the issue via a fault.

Fault diagnosis usually accounts for 50-70% of the code within any production application.

In other words, when you have the control logic done but not the fault detection, you are only
about 1/3 to 1/2 done with your application. MotoHawk provides a nice set of blocks to help you
signal faults and take actions as a result of faults.

About Faults

system failure

system failure

system failure

system failure

Faults are nothing more than signals that some logic has found an issue within the system.
Fault diagnosis and identification is a complex subject that changes based on the application.
However, you will find that all good applications at least diagnose sensor failure, and should diagnose
actuator failures if possible. Why? Because wiring harnesses fail, sensors fail, and actuators fail.

Ideally, your application will do three things well:
	

	 Fault Containment — the act of keeping a fault from propagating to other parts of the system.	
	Fault Identification — the act of determining, as precisely as possible, the source of the fault.
	 Fault Annunciation — the act of reporting the fault to someone who can fix it.
	 Fault Action — the act of adjusting system operation in response to the fault.

Some faults are easy to detect — like a signal being out of range. Others can be terribly difficult
— like a signal stuck in range. Unfortunately, MotoHawk does not help you with the containment or
identification problems. That is the job of the application designer. MotoHawk will however, allow you
to record the faults, help annunciate them and help interface to action code.

CHAPTER 2 : Faults
About Faults � 1

MotoHawk Fault Theory of Operation� 2

Fault Blocks� 3

Fault Manager� 3

Fault Definition� 4

Set Fault & Clear Fault� 4

Fault Status� 5

Clear All Faults� 5

Fault Action� 6

Example� 7-8

 MotoHawk Resource Guide: Chapter 2 Faults - Page 2

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

MotoHawk Fault Theory of Operation
MotoHawk contains a series of blocks that allow you to signal
a fault, read the fault status, change the fault status, and take
fault actions.

The easiest way to think about this — you have fault signals
and fault actions...

Fault signals are an indication that a fault has occurred.

Fault Actions are what the application should do when
various faults occur.

MotoHawk allows you to route multiple faults to a single fault action. This is a powerful idiom that
will simplify the designer’s job. Because fault actions are independent of faults, there is no need to define
various levels of seriousness to the faults. The seriousness is contained within the application.

For instance, an engine designer may design a fault that detects low oil pressure and an action that
is capable of shutting down the engine. He can then decide if low oil pressure is worthy of shutting
down the engine. Often times, this decision cannot be made at design time.

You may be building an engine that can be installed in a trash truck and a fire truck. Shutting down
a trash truck because of low oil pressure is probably very desirable so that the engine can be
repaired. However, most fire departments would just as soon pump water onto the fire until the
engine is reduced to a pile of molten metal rather than shut the engine down.

MotoHawk respects this and allows you to calibrate faults to fault actions, rather than requiring the routing
be set at design time. This allows a single code build to handle both of the example cases with just a
change in the calibration.

Faults also need to have filtering. MotoHawk faults provide an X out of Y test which, basically says that
the fault must be present X times out of Y samples to be declared active.
	
	� Faults are considered “Suspected” whenever any of the Y number of samples have

detected the fault but the number is less than X.
	
	 Faults are “Active” when at least X out of Y have occurred.

In addition to filtering, MotoHawk faults have some different behaviors. A Fault can be:

	 Disabled — meaning it will not signal a fault even if the X out of Y condition is satisfied.

	� Sticky — meaning that once set it will remain set until the next power down or until it is
explicitly cleared. This setting is handy for detecting transient or intermittent faults that
may appear and disappear before they can be observed in MotoTune.

	�

	� Persistent — a fault that acts like the “Sticky” fault, in that it will remain set once the
fault conditions occur. But it will remain set across a power cycle. A persistent fault
once set will remain set until it is explicitly cleared.

Fault Actions can be initiated by one or more faults. Any given fault can drive up to four fault actions based
on various states of the fault (i.e. Suspected or Active). The fault action block will report a high Boolean
signal when any of the associated faults are set. The application designer is then responsible to define the
proper system response.

	

 MotoHawk Resource Guide: Chapter 2 Faults - Page 3

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Fault Blocks
MotoHawk provides several blocks to define and interact
with faults within your system.

These are located in the MotoHawk Library under Fault
Management.

Fault Manager
This block can exist anywhere in your model. You will need
only one for the model. The storage for the fault manager
allows you to control where the fault calibration is stored.

If set to FLASH — the faults can only be calibrated on a
development module or offline.

If set to EEPROM — the calibration can be adjusted on any
module.

The access level refers to the security level required of the
MotoTune user to perform the action.

The MotoTune group string controls where the Fault calibration
will be shown in the MotoTune Calibration Tree.

 MotoHawk Resource Guide: Chapter 2 Faults - Page 4

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Fault Definition
This block defines a fault in your system. Faults must have
unique names throughout the system.

Set Fault & Clear Fault
These blocks will set or clear a fault that has been defined
elsewhere.

The application is responsible for coordinating when these blocks run
— there is no coordination done by the Fault Manager.

 MotoHawk Resource Guide: Chapter 2 Faults - Page 5

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Fault Status
These blocks allow you to read the status of a single fault or
a group of faults.

When reading multiple statuses, the output will be a vector
of boolean values corresponding to the fault list.

Clear All Faults
This block, when triggered will clear all of the faults.

If the fault conditions still exist, once the X of Y filters are
satisfied, the faults will re-activate.

	

Motohawk_get_faults(system:)
This is a utility function that will
retrieve all of the faults located in
the system and its children. Use
bdroot to find all faults within the
model. The fault list returned by
this function will be alphabetized.

 MotoHawk Resource Guide: Chapter 2 Faults - Page 6

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Fault Action
This block defines a fault action.

The fault action name must be unique within a model.
The action will become active when a fault is routed to it
either via the design or via calibration. The application
designer then needs to create the code that will execute
when the fault action is active.

 MotoHawk Resource Guide: Chapter 2 Faults - Page 7

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Example
This example will demonstrate
the Fault Blocks.

Start with motohawk_
project(‘Fault1.’)

Remove the existing contents
of the Foreground subsystem

Create the model as shown.
Build the model.

Run MotoTune, program the
module, and open a display or
open the FaultExample.dis file.

*For a larger view of drawing, open MotoHawk_Resource_Guide_11x17_drawings.pdf on the included training cd.

 MotoHawk Resource Guide: Chapter 2 Faults - Page 8

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

(example continued)
Notice in MotoTune display explorer,
there is a category for Faults that
contains the display variables for:

	 Active Faults
	Occurred Faults
	Suspected Faults
	command that will clear faults

Also, for every Action there is a reason
display variable that will tell you all of
the faults that are causing the particular
action.

All of the displays are marquee type
displays, that will roll through the faults
and display the fault names.

Open a calibration and notice the Faults
category in the Calibration Explorer. The
Fault Manager is located here.
Open it up.

The fault manager contains fields
that can be set in the Simulink Fault
Definition Block. They are found here
and can be adjusted at run time.

There is also an extra field, “Test,” that
will allow you to force the fault active
without the input conditions being set.

Note how the calibration has been
adjusted to route some of the faults to
particular actions.

*For a larger view of drawing, open MotoHawk_Resource_Guide_11x17_drawings.pdf on the included training cd.

 MotoHawk Resource Guide: Chapter 3 CAN - Page 1

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

	 Sending and
receiving messages

via a CAN port is incredibly
simple. It is far easier to send or

receive a message via CAN than it is a
RS232. However, there are a couple of issues

that can make it seem daunting — especially when
talking about CAN protocols like J1939 or SmartCraft.

WARNING
TO THE READER:

CAN IS NOT DIFFICULT!

The CAN standard was invented by Bosch in the early 1990’s to facilitate the communication
of data between devices in a vehicle. CAN literally means Controller Area Network.

All MotoTron Control Solutions modules are compatible with the current standard — CAN 2.0B.
Most of our modules have at least one CAN port, while a few have as
many as three.

All of our drive-by-wire marine applications require two busses for reliability and redundancy,
so many modules are equipped with a pair of busses.

On to the basics of what makes a CAN bus.

About CAN

CHAPTER 3 : CAN
About CAN� 1

Introduction� 2

CAN Bus Basics� 2

Payloads� 3

Protocols� 3

What should a protocol specify?� 4

Examples of Protocols � 4

MotoHawk CAN Theory of Operation� 4

Using CANKing to Observe the Bus� 6

Basic CAN Blocks� 8

CAN Channel Definition� 8

CAN Transmit Raw� 9

CAN Receive Raw� 9

Slot Properties� 10

Slot Receive Trigger� 10

Example� 11

Advanced CAN Blocks� 13

Payload Bit Numbering� 13

Standard ID Bit Numbering� 13

Extended ID Bit Numbering� 13

Message Definition Structure� 14

Advanced Example� 16

Recommended Usage of CAN Message Receive Blocks� 18

 MotoHawk Resource Guide: Chapter 3 CAN - Page 2

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Introduction
This section covers the basics of the CAN databus and how to use
the MotoHawk facilities to interface your module to a CAN bus.

CAN Bus Basics

First, a CAN bus requires at least two participants in order to be a bus. The physical connection
between devices is a 2 wire cable. The wires are often labeled CAN-H and CAN-L. There must be a 120
ohm resistor between CAN-H and CAN-L somewhere on the bus called a terminator. The terminator resistor
can be placed physically anywhere in the bus, but ideally is located at one end or the other. You can have
more than one terminator, but remember that too many cause the bus to stop working.

CAN bits are transmitted across the bus as either dominant or recessive. This means that a
dominant bit (a 0) will win over a recessive bit (a 1). All of the transceivers on the bus must be operating
at the same bit rate (aka the baud rate.) All of the transceivers on the bus synchronize to one another by
detecting the edges between 1s and 0s. Luckily, the transceivers do much of the hard work of transmitting
and receiving messages. The software needs only load messages to be sent and react to incoming
messages. The transceivers make sure that a message gets out on the bus if possible. Commonly, busses
are operated at 250K baud but can run as fast as 1M baud. The length of the bus is directly related to how
fast you can run the bus. For reliable communications, the maximum range at 250K baud is 100 feet; at
1M baud it is 30 feet.

All CAN messages are comprised of:
- An ID of either 11 bits (aka a standard ID) or 29 bits (aka an extended ID),
- A Data Length Field saying how many payload bytes there are. This number can be from 0 to 8, and -
A payload of 0 to 8 bytes. Notice that the payload can change sizes. Yes, a perfectly valid message can
contain no payload at all. You might ask, why you would ever transmit a message with no data? Usually to
indicate that a module is alive by sending a heartbeat to other modules in the system or to represent the
occurrence of an event. Notice as well that IDs can be of two different types. Is it permissible to have both
types on the bus at the same time? Absolutely. The bus will perform just fine with both types of IDs and
variable length payloads running across it. Also, messages with IDs of the same value but different type are
considered totally different messages.

So, how are the inevitable bus collisions (times when two modules want to transmit at the same
time) handled in CAN? Very nicely.
Remember that all transceivers are synchronized. The two transmitting modules will start clocking out
their ID bits at the same time starting with the most significant bit. As soon as the ID bits differ, the device
that is transmitting the 0 wins the bus (because 0s are dominant) and continues clocking its bits out. The
device with the 1 in the ID bit, automatically detects that it lost the bus and stops trying to transmit, and it
will automatically wait until the next transmission slot to try again.

So, this brings us to a couple of rules:
	� Lower ID values have higher priority on the bus

(and standard IDs are higher priority than extended IDs)
	 No two devices can transmit the same ID.

The first rule is fairly obvious. 0s are dominant, so lower IDs will make it on the bus first. The fact that
standard IDs are higher priority than extended is caused by the transmitting of a 1-in-1 of the early
messaged header bits to indicate that the following ID is extended.

 MotoHawk Resource Guide: Chapter 3 CAN - Page 3

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Payloads

Protocols

The second rule is not as obvious, but will bite you. If two modules tried to send the same ID at the same
time, neither would know that it did not win the bus. The failure would not occur until they had a different
bit in the payload. Unfortunately, each module will only be informed that its message failed a parity test
(due to the payload bits being clobbered). Each module will then dutifully retry to transmit. Since they are
synchronized, they will once again clobber each other. So, never, ever have two modules potentially sending
the same ID. Of course, never is a strong word. And, you will see that some protocols actually will break
this rule to do address claiming — but more on that later.

Recall that payloads can have between 0 and 8 bytes of data.
Those 8 bytes can mean anything you want them to mean. The CAN 2.0B specification does not have an
opinion about the contents of the payload. Of course, choosing IDs and defining payload contents can be a
daunting task. If you own the entire bus design, you can simply choose IDs and data packing. However, if
you need to coordinate bus usage, then a protocol needs to be chosen so that IDs are unique and multiple
developers can interface to one another. Luckily for you, there are plenty of protocols to choose from like
J1939, GMLan, SmartCraft, CANopen, etc. You can also run multiple protocols at the same time across the
bus — just make sure the IDs do not clash and there is sufficient bandwidth and you are good to go.

A frequent question is... How much data can a CAN bus transfer?

There is plenty of sophisticated math can run. Or, you can remember that the maximum
performance is about:

	
	 2000 messages per second at 250K Baud (or 16000 bytes per second of payload.)

	 4000 messages per second at 500K Baud.
	 8000 messages per second at 1000K Baud.

Good network design requires that you plan for no greater than 70% bus utilization or about 1400
messages per second at 250K. Protocols will often require you to pace messages at a minimum
interval between messages so that the instantaneous message rate adheres to these limits. For
instance, J1939 paces messages at 50 milliseconds for large data transfers. In other words, they are
limiting a block transfer to about 1% (1/0.05/2000) of the available bandwidth.

Protocols are where CAN gets thorny. Because CAN has a limited number of ID bits and only 8 bytes of
payload, defining ways to transport all types of data can be difficult. Often times we hear questions like,
“Do you support CAN?” The answer is, of course, yes. What they are probably asking is, “Do you support
[something like] J1939 running across CAN?” The answer is maybe.

We usually consider protocols to be application specific. That is, the application is responsible for
implementing the protocol. MotoHawk, Control Core, and Woodward’s MotoTron Control Solutions hardware
provide all of the necessary infrastructure to implement protocols, but it is rare for protocols to be
implemented in these layers. The exception to this is the reprogramming protocol for the module via CAN.
The boot loader needs to communicate with MotoTune to reprogram a module. Since the application is not
running during reprogramming, the boot loader then becomes responsible for the reprogramming protocol.

 MotoHawk Resource Guide: Chapter 3 CAN - Page 4

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Most protocol specifications will define Message Definitions which include:
	 ID (including whether it is extended or standard)
	 A description of any of the meaning of any ID bits
	 A description of any ID bits that are “don’t care,” commonly called the mask
	 Frequency of the message, or the event that will cause it to transmit
	 The device responsible for transmitting the message
	 The expected number of bytes in the payload
	 The contents of the payload
	 The size of each content item in bits
	 The location of each content item in the payload
	 The data type of each of the content items
	 The byte packing order of each of the content items
	 A translation of each content item into “real world” units
	 If the protocol has states, then a list of all states and transitions

Unfortunately, 95% of all protocol specifications are incomplete because they assume certain facts (like byte
order) without specifying them. The missing information is often the reason that you cannot connect your
application to an existing CAN network without problems.

J1939 : Recommended Practice for a Serial Control and Communications Vehicle Network
This is the network found on many heavy duty trucks. Communication is defined for a very large
number of devices like engines, transmissions, dashes, anti-lock brakes, etc.

NMEA2000 : This is the protocol published for marine vessels. The protocol is similar to J1939.

SmartCraft : This is the drive-by-wire protocol on Mercury Marine powered vessels.

GMLan : This is the protocol running in your favorite Chevy.

CCP : This is the CAN calibration protocol used by many controllers for calibration and service tool interaction.

When transmitting, all messages are transmitted via a single hardware buffer...
(usually buffer 0) from a software queue. As the application executes, each message that is to be transmitted
is loaded into the software queue. The OS then monitors the buffer and transmits messages from the queue as
quickly as possible.
(Remember at 250K baud, it takes about 500 ns per message to transmit if the bus is not otherwise busy.)

Two different forms of transmit blocks are available.
One will transmit a raw message — meaning a message with the ID and payload computed by another part of the
application. The other block will form the message from individual signals being fed to the block and a message
specification. The latter block is generally used for broadcast, fixed content messages. The former is generally
used to handle protocols in which the payload changes based on the state of the protocol.

What should a protocol specify?

Examples of Protocols

MotoHawk CAN Theory of Operation

MotoHawk provides several blocks to make interfacing
to any CAN bus and protocol relatively easy.

 MotoHawk Resource Guide: Chapter 3 CAN - Page 5

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

(MotoHawk CAN theory of operation continued)

Receiving of messages...
is conceptually simple, but terribly complex because the CAN
hardware does not provide much assistance. MotoHawk has
abstracted much of the complexity away by automatically
generating a sophisticated software message dispatcher. As
you create message receive blocks, each block will require a
message ID and a message ID Mask that describe the message
ID that you want to receive. The ID mask is simply
a description of which bits of the ID must match in order for the
message to be accepted.

For instance, if the Message ID is set to 0x7ff and the
ID Mask is set to 0x7f0, then all messages from 0x7f0,
0x7f1, through 0x7ff will be received by this block.

At code generation time, the entire model is surveyed for all
of the various IDs and masks and a software dispatcher is
generated to handle this combination. The dispatcher will
adjust the hardware to filter as many messages as possible
from the bus and then filter the rest in software so that only
the desired messages are passed up to the application.

Each CAN receive block can optionally provide a slot name
that allows other blocks to access and adjust the defined
slot.

The way to think about this mechanism is like a post office...

Your slot is where you expect to get mail (or messages) destined for you.
The mail sorter (or the software dispatcher) grabs all of the mail and sorts it into various slots.
Sometimes you may want to adjust the rules for your slot; maybe you are going on vacation, so that
the mailman changes what shows up in your slot.

For MotoHawk CAN receive blocks, you can create a slot by name that can be adjusted
elsewhere in your application. In the previous example, we decided at design time that we needed
to receive all messages between 0x7f0 and 0x7ff. But perhaps at run time some logic decides that
you really only need to receive 0x7F1, because the module now knows what engine it is installed on.
There is a slot properties block that allows you to adjust the slot to tighten the ID mask — so only
message 0x7F1 shows up at the receive block.

In other words, the mailman will deliver all of the mail that you requested when the code
was built. But you have the ability to ask him to throw away some of the messages prior to
placing them in your slot.

There is also a slot trigger block that can be used to notify that a slot has received a message via a
function call trigger. In other words, the mailman will ring your doorbell when he puts mail in your slot.

Just to make matters more interesting, you may want to censor some of your mail...
so that only messages with certain contents are placed in your slot. Each of the CAN receive blocks
has the ability to filter based on the payload contents via a payload value and a payload mask set of
values. Like the ID, the payload mask simply indicates which bits of the received payload must match
the given payload value.

For instance, say that you want to receive messages 0x7f1 whenever the first byte of its payload is
exactly 0x8f and when the last bit of the payload is set. The payload value would be set to [0x8f 0x00
0x00 0x00 0x00 0x00 0x00 0x01] and the payload mask would be set to [0xff 0x00 0x00 0x00 0x00
0x00 0x00 0x01.]

In other words, the first byte must match all 8 bits and the last bit must be set in order for this
message to be put into this particular slot. So now, the mailman reads our mail for us and obeys our
content requirements before shoving the mail into the slot. As with IDs, the payload requirements can
be adjusted at run time via the slot properties block.

Like the transmit blocks, there are two flavors of receive blocks, one for raw messages and one that
will unpack the payload and the ID into their respective data fields, providing them as signals to the
rest of the application.

 MotoHawk Resource Guide: Chapter 3 CAN - Page 6

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Using CANKing to Observe the Bus

Your MotoHawk kit included an interface for your PC that allows
the PC to communicate to two CAN ports via the USB interface.
These devices are made by Kvaser (www.kvaser.com.)

Kvaser publishes a free CAN tool, CANKing, which allows you to observe the
bus and even send messages. You will need this tool routinely. Download
CANKing from our website at http://mcs.woodward.com/.

Initially running CANKing, you will get dire warnings about
safety the first time you run the program. Acknowledge their
warning and check the box to prevent the warning in the future.

CANKing will launch with the following window

Choose “Template” to start a new project.

Choose “CAN Kingdom Basic” from the templates dialog.

You will then have several windows scattered about your
desktop.

First, look at the “CAN Controller” window. Choose the “Bus
Parameters” tab. Choose the channel that you want (Channel
0 is the typical choice for the MotoHawk kits.)

Set the Bus speed to 250 Kbits/s.

Switch to the “Bus Statistics” Tab and press the “Go On Bus”
button.

If there is traffic on the bus, the “Bus Load” bar will give you an idea of
how much bandwidth is being consumed. If the “Error Passive” indicator
illuminates, there are 3 possible reasons:
	 No bus terminator
	Incorrect BAUD rate
	No other modules on the bus (because the modules 		
	are not operating or there is a wiring problem.)

Just because there is a green light for “On Bus” does not mean that the
bus is actually connected properly. An “Error Passive” will not occur until
a message is sent from CANKing which cannot reach a receiver, or a bad
message is received. If nothing is received and nothing is sent, then CANKing
stays in the “On Bus” state, which can be confusing.

IMPORTANT : Uncheck the Exclusive box or MotoTune will not be able to communicate
to the module while CANKing is running.
Unfortunately, this setting is not saved in the CANKing project file so you will need to browse to
this window and uncheck the Exclusive box each time you run the program — even if you reopen a
saved project rather than start again from a Template.

 MotoHawk Resource Guide: Chapter 3 CAN - Page 7

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Open the Messages menu and select the Universal page to get
a window that will allow you to test transmission of messages.

Transmit anything and you will either see the state “Error
Passive” or the message will appear in the “Output Window.”

To display the messages in a useful form, find the “Select
Formatters” window, select the “Standard Text Format” in the
“Active Formatters in Order of Execution” list, and press the
“Options” button.

The window “Text Formatter Options” will appear

Choose the setting shown.

These settings will cause the data to be displayed as shown

A handy option in the “Output Window” is available via the right click
mouse button. This will fix the positions of the messages into lines of
the display rather than showing the bus trace.

 MotoHawk Resource Guide: Chapter 3 CAN - Page 8

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Basic CAN Blocks
MotoHawk provides a number of different CAN blocks that you
will need to use for different circumstances.

The most important block is the CAN definition block
that will set up a channel’s BAUD rate, configure the transmit
queue size, and allow the installation of the MotoTune protocol.
This block must exist in order for any CAN transmission or
reception to take place.

The next two basic blocks are the “CAN Send Raw” and the
“CAN Receive Raw” blocks. These blocks simply transmit or
receive messages without any payload manipulation.

CAN Channel Definition
This block can exist anywhere in your model.
You will need one for each CAN channel.

Bit Timing sets the bus speed or baud rate.

Transmit queue size defines the size of the transmit queue.

MotoTune can be automatically installed along with defining
the City ID and calibration details for the City ID.

City IDs : The City ID is a MotoTune protocol value that
essentially identifies the device. City ID 11 (0x0b) is the
default for all of our modules. City ID 2 (0x02) is the ID
for MotoTune. If you monitor the can bus while MotoTune
is active, you will see extended message IDSs like
0x00000b02 and 0x0000020b. The MotoTune Protocol
uses a scheme where messages are transmitted
with IDs of the form 0x0000DDSS where DD is the
Destination City ID and SS is the Source City ID. You
can simultaneously MotoTune to several modules. Each
module must have a different City ID.

 MotoHawk Resource Guide: Chapter 3 CAN - Page 9

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

CAN Transmit Raw
This block can have multiple instances within your model.

The bus that you want to transmit on and the interval of
transmission are defined.

The inputs to the block are the ID and its type, the length of
the data to send and the data itself.

Data (0-8 bytes uint8): This block is designed to
take a vector on the Data port of any size of up to
8 bytes. If you feed the port with a vector of only
3 bytes, but set the Length port to be 8, then the
block will pad the extra bytes with the value 0.

Periodic Interval [ms]: If this value is set to -1, then the
message will be sent every time this block is executed.
If the value is set to a positive value, then the block will
attempt to transmit the message at the requested rate.
However, this check is only done whenever the block
is executed. So, if the block is running at 5 ms and
the Periodic Interval is set to 12 ms, you will see the
message on the bus at a 15 ms period.

CAN Receive Raw
This block can have multiple instances in a model. If the slot
name is defined, it must be unique.

The parameters define the CAN bus, message ID, ID mask,
Payload and Payload Mask, along with the receive Queue
size and the slot name. A data available port (1 whenever the
queue has any messages) and an Age Count port (increments
whenever a message is not available and resets when a
message is available.)

Masks: Masks define which bits must match. A bit value
of 1 within a mask means that the corresponding bit in
the ID or payload must match the incoming message
to be received by this block. A bit value of 0 in a mask
positions means that you do not care what value is in
that position.

 MotoHawk Resource Guide: Chapter 3 CAN - Page 10

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Slot Properties
This block can have multiple instances in a model.

The slot name is used to match to the slot defined in the
receive block. The choice of adjusting ether the ID filter or the
Payload filter is set here.

Remember that slots can only be tightened, so only mask bits that were 0 in
the corresponding receive block can now be set to 1.

Usually this block is placed in a triggered subsystem, so that the slot
properties are adjusted only on some conditions — such as at startup
or on change of some state.

Slot Receive Trigger
This block provides a function call trigger whenever the
specified slot receives a message.

This trigger is high priority and will interrupt any other
executing periodic task.

 MotoHawk Resource Guide: Chapter 3 CAN - Page 11

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Example
This example will demonstrate the basic CAN blocks.

Start with motohawk_project Can1.

Remove the existing contents of the Foreground subsystem.

Create the model as shown — Build the model.

Run MotoTune, program the module, and open a display.

Run CANKing.

Right-click on the CANKing output window and select
“Fixed Positions”.

In your MotoTune display — change the formatting of
RX_slotID, RX_slotIDmask, RX_ID, and TX_ID to display hex.

	

*For a larger view of drawing, open MotoHawk_Resource_Guide_11x17_drawings.pdf on the included training cd.

 MotoHawk Resource Guide: Chapter 3 CAN - Page 12

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

(example continued)
Notice in CANKing that the message 0x6ff is being transmitted
every 20 ms.

In CanKing, transmit a message on address $7f0
with any data.

You should see the data in your MotoTune display and the
Rx_Age value should reset and start counting from 0.

Adjust the slot ID and mask as well as the payload values to
see how the messages are affected.

In CANKing, a value starting with $, like $7F0, means that the value is in
hexadecimal rather than decimal.

Ending the ID value with an x, like $7f0x, would mean make the ID extended
rather than standard.

The individual bytes of the payload may also be set using the $ notation
for hexadecimal.

DLC is the number of bytes to transmit in the payload.

	

 MotoHawk Resource Guide: Chapter 3 CAN - Page 13

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Advanced CAN Blocks

Payload Bit Numbering
Critical to the definition of messages is the location of the
least significant bit within the possible payload positions.

MotoHawk defines the bit numbering as shown to the
right. This bit numbering is different than most protocol
specifications.

You ALWAYS specify the location using the LSB of the field, regardless
of the byte packing order.

You do NOT necessarily use the bit furthest to the right, which would be the
positions. MotoHawk defines the bit numbering as shown to the right. This
bit numbering is different than most protocol specifications.

Standard ID Bit Numbering
Like payloads, IDs can be packed or unpacked.
For standard IDs, the bit number is defined as shown.

Extended ID Bit Numbering
For extended IDs, the bit numbering is defined as shown.

The payloads contained within CAN messages often need to be packed or unpacked into their
constituents for use by the rest of the model. MotoHawk provides a transmit and a receive block that
incorporates the packing and unpacking of data elements into the messages. Additionally for transmission of
messages, the block can pack multiple messages simultaneously and place them onto the bus at a specified
period for the message group, as well as an inter-message pacing interval to conserve bus bandwidth.

Each of these blocks requires a message definition in order to properly pack or unpack the data.
The message definition is nothing more than a MATLAB structure containing specific fields which we will
cover below. In addition to unpacking the payload, it is also possible to unpack the ID fields. This becomes
important for protocols, like J1939, where the bottom byte of the ID is the source address of the module
transmitting the message. As with the Can Read Raw block, all of the ID mask and payload mask details
still apply.

For transmitting CAN messages — setting the payload mask will cause the bits that are set to precisely
have the value set in the payload value, regardless of the value of any fields that might be defined on those
bits. This allows you to set fixed elements of the payload to a value without needing to define fields for
those values.

An m-file, motohawk_can_example, is provided with MotoHawk that defines a proper
Matlab structure for defining a MotoHawk CAN message. We recommend copying this
file and creating new CAN message definitions using the supplied structure as a template.

 MotoHawk Resource Guide: Chapter 3 CAN - Page 14

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Message Definition Structure
Motohawk_can_example.m contains the details of the
structure format needed to define a message.

	

.name 	 - name displayed on block	 (default: empty string)

.description 	 - brief text used to document the message	 (default: empty string)

.protocol 	 - name of the protocol used	 (default: empty string)

.module 	 - name of the source module	 (default: empty string)

.channel	 - number of the source CAN channel	 (default: 1)

*** CAN ID setup ***

.id 	 - may be either 11 or 29 bits (if undefined, uses .idinherit = 1)

.idext 	 - either ‘STANDARD’ (11-bit) or ‘EXTENDED’ (29-bit) (if undefined, uses .idinherit = 1)

.idmask 	 - indicates which bits are relevant for a receive slot (default: 0xffffffff)

.idinherit 	 - when set to 1, causes the message to use the ID of (default: 0)
 	 the previous message in a list of messages (only applies for transmit messages)

.idcontent{} 	 - bit fields within message ID, as described below. (optional)
 	 Describes individual fields within the ID.
		 May be undefined or empty, if no ID content is defined.

*** transmit interval, message size, and contents ***

.interval 	 - period in milliseconds, or -1 if sent asynchronously (default: -1)

.payload_size 	 - payload size may be from 0 to 8 bytes. (default: 8)
 	 transmit: exact number of bytes to send.
 	 receive: minimum number of bytes required.
.payload_value 	 - just as an ID has a value and mask, so can the (optional)
 	� payload. For receives, this will result in a software filter requiring the bits set in the

payload mask to be equal to those in the payload value. For transmits, any bits set in
the payload mask will be hard-coded to be the corresponding bits of the payload value,
regardless of any payload fields that may overlap it. A typical use of this feature is to
identify a specific message by the first byte of the payload. May be a vector of bytes or
a hex string.

.payload_mask - �indicates which bits of the payload are relevant for a receive slot, or which bits will be 	
hardcoded for transmits. If the number of bytes is less than the size of the payload, the
unset bytes are assumed to be 0, meaning do not care.

 MotoHawk Resource Guide: Chapter 3 CAN - Page 15

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

(message definition structure continued) May be a vector of bytes or a hex string.

.fields{} 	� - fields within message payload, as described below. (optional)
 	� Describes individual fields within the payload.

May be undefined or empty if no payload fields are defined.

Structs in the .idcontent{} and .fields{} cell arrays may contain the following fields:

.name		 - name displayed on the block (default: empty string)

.units 	 - units (of Simulink-model value) used in mask display (default: empty string)

.start_bit 	 - indicates the least-significant bit of the field regardless of endian-ness (required)

.bit_length 	 - number of bits in the field may spill across bytes (required)

.byte_order	 - may be ‘BIG_ENDIAN’ or ‘LITTLE_ENDIAN’. (default: ‘BIG_ENDIAN’)
 	 (only ‘BIG_ENDIAN’ is valid for .idcontent{} fields)
.data_type 	 - may be ‘UNSIGNED’, ‘SIGNED’, ‘FLOAT32’, or ‘FLOAT64’ (default: ‘UNSIGNED’)
.scale 	� - scale factor. Since the same message description (default: 1.0)
 	� struct is used for both transmits and receives, the scale factor should not be thought

of as a gain. Instead, think of it as the units of the signal in the payload on the CAN
communication wire such as 1/100 of a degree for a signed integer representing degrees
Kelvin where 1245 (in the payload on the CAN communication wire) represents 12.45
degK (in Simulink model units). See equation below.

.offset		 - offset applied to the field in engineering units. (default: 0.0)
 	� This is sometimes used to represent high-resolution values in a range far from zero.

To represent Simulink-model values from 230 to 270 Kelvin, a range of +/ - 20.47 degC
with 0.01 degC resolution is available using a signed 12-bit value in the payload on the
CAN communication wire with an offset of 250 Kelvin. See equation and example below.

	

 MotoHawk Resource Guide: Chapter 3 CAN - Page 16

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Advanced Example
Create a new model using motohawk_project(‘can2’)

Remove the existing contents of the Foreground subsystem

Create the model as shown. Build the model.

Run MotoTune, program the module, and open a display.

Run CANKing.

*For a larger view of drawing, open MotoHawk_Resource_Guide_11x17_drawings.pdf on the included training cd.

 MotoHawk Resource Guide: Chapter 3 CAN - Page 17

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

(example continued)

Note the 1F3 message being transmitted.
The 3 comes from the Node ID input.

Transmit a message from CANKing and verify that the value
is received by the module as shown by the probe values in
MotoTune.

 MotoHawk Resource Guide: Chapter 3 CAN - Page 18

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Recommended Usage of CAN Message
Receive Blocks

Datatype all signals.

Zero all signals if timeout occurs.

Create a documentation cross
reference for the datasheet.

Use AgeCount port to
determine timeouts.

Create a timeout fault for
each message.

Probes all fields.

Consider adding an override
for testing purposes.

*For a larger view of drawing, open MotoHawk_Resource_Guide_11x17_drawings.pdf on the included training cd.

 MotoHawk Resource Guide: Chapter 4 Faults - Page 1

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

MotoHawk is designed to be an integrated rapid prototyping control system solution
out of the box. However, once a system starts growing into a larger control system,
memory management becomes increasingly more important.

In this section, we will discuss the basic memory layout of Woodward’s MotoTron
Control Solutions modules and discuss in detail the blocks that have the most impact
on memory usage and performance. Memory management of your MotoHawk
control system requires the understanding of vardecs (Variable Declarations).

MEMORYMANAGEMENT

There are three types of variables available in MotoHawk; Constant (Const,)
Non-Volatile, and Volatile Data.	

Constant : is just that, constant, never changing data.

Non-Volatile data : can be changed and is saved between power cycles. Non-Volatile data is
predictable during and between power cycles because it will always retain its last known value.

Volatile data : can be changed, but is not saved. After a power cycle it will return to its
original default value.

What to remember and what not to remember

CHAPTER 4 : Memory Management
Variables types	 1

Knowing your memory	 2

Why so much different memory?	 2

Knowing the hardware	 2

Familiarize yourself with the interface	 3

Block Parameters	 3

Calibrations 	 6
Calibration : Default Value	 7

Calibration : Output Data Type	 7

Calibration : Access Levels	 7

Calibration - Behavior	 8

Calibration : View Value As	 9

Calibration : MotoTune Help/Units	 9

Calibration : MotoTune Min/Max	 10

Calibration : MotoTune Precision - Gain/Offset/Exponent	 11

Calibration : MotoTune Group	 12

Probes	 13
Probe : Name	 13

Probe : Name Source	 13

Probe : Read Access Level	 14

Probe : View Value As	 14

Probe – MotoTune Help / Units	 14

Probe : MotoTune Precision Gain/Offset/Exponent	 15

Probe – MotoTune Group	 15

Overrides	 16
Override : Name	 16

Override : Name Source	 16

Override : Override Access Level	 17

Override : View Value As	 17

Override : MotoTune Help/Units	 18

Override : MotoTune Min/Max	 18

Override : MotoTune Precision - Gain/Offset/Exponent 	 19

Override : MotoTune Group	 20

 MotoHawk Resource Guide: Chapter 4 Faults - Page 2

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Knowing your memory

Why so much different memory?

Knowing the hardware

Woodward’s MotoTron Control Solutions modules include three types of storage devices.
	

�Flash is read only memory and retains its information between key cycles. Control Core,
the MotoHawk application, and constant data are stored in the flash region of the module.

EEPROM (Electrically Erasable Programmable Read Only Memory) is similar to flash, in that it will
retain its information across key cycles. However, EEPROM can be erased and written to. This section of
the module becomes the most important when saving calibration changes and is responsible for saving and
recalling the non-volatile data in a model. Read and write to the EEPROM as your control algorithm changes.
We will discuss later when the EEPROM is written to and how to ensure that you safe guard your data.
There are two different types of EEPROM, serial and parallel. Parallel EEPROM is only available on a
development module. This memory is what allows the user to change non-volatile display and calibration
variables in real-time during testing and validation.

RAM (Random Access Memory) is only temporary memory space used for volatile data.
The contents of RAM are erased between key cycles. Any changes made in RAM will be lost once the
module has been turned off.

Flash is used to write information that can not be accidentally overwritten. This is why the program
is stored in flash. If the program was stored in EEPROM, one wrong memory write and you may have
overwritten a vital part of the control system.

EEPROM is the work horse for memory management of your control system and offers the best of both
worlds. It is capable of storing information, but is also capable of erasing and writing new information.
There is one draw back to EEPROM — any given memory location can only be written to at most 100k
times. So if you were saving a variable every 5ms, it would not take long to reach the 100k cycle and
possibly burn out that location of the EEPROM.

To avoid this problem, the contents of the EEPROM are “shadowed” into RAM when the module is turned
on. Changing a variable that will be saved across a key cycle is actually changed in the RAM copy and
shadowed back in the EEPROM at shutdown. Later you will learn how to save the Nonvolatile data based on
your own criteria.

Wodward’s MotoTron Control Solutions modules come in two different versions.

The development version has an added parallel EEPROM region where vardecs are stored.
This extra memory region allows the user to view and change calibration and display variables using
MotoTune and is typically used for testing and calibration.

A production module contains only the serial EEPROM. No real-time calibrations can be
performed with this module without explicitly assigning the variable to be stored in the non-volatile
region, which we will discuss in the next section. In this way, the cost of production modules is kept
down relative to their development counterparts.

 MotoHawk Resource Guide: Chapter 4 Faults - Page 3

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Name Source : “Use Parameter” is the default for this field,
which requires the name field above to be entered. Other
choices include “Use Output Wire Name”, or “Use Input
Wire Name”.
This will gray out the “Name” field and reference the wire name attached
to the block.
For a calibration, if you select “Use Output Wire Name”,
then double click on the wire attached to the output and
provide a name for the wire, update the model, then the
calibration block will take the name provided for the wire.

Output Data Type : By default, MATLAB makes all data
types double. By not making a selection or specifying it
in the “Default Value” field, then the output will default to
double. Otherwise, you have two ways of specifying the
data type. You can leave this field to “Inherit” from “Default
Value” and enter the data type along with the “Default
Value” field. (For instance, unit 16(0)). This indicates that the
default value will be a 16 bit unsigned integer with the value
of zero, or you can use the pull down selection of this field
to explicitly identify the output data type, such as uint16. You
can then leave the default value to be just the number zero.

Access Levels : Access levels handle the security of the
control system and relate to the access level of the MotoTune
security dongle, as well as the port access level specified on
the PC connecting to the control module.

Access Levels range from a value of 1 thru 4. By default,
all the blocks that have access levels are set to “1.” Anyone
with a MotoTune security dongle with access level 1 or above
may view and/or change this vardec. Since 1 is the lowest
access level, everyone has access to this vardec.However,
if the access level was set to a 2, and your MotoTune
security dongle only had access level 1, you would not have
permission to view or change this vardec.

By default all MotoHawk kit dongles have access level
number 4. Since level 4 is the highest, those dongles have
access to everything within the control system. Lower level
dongles are available from Woodward.

Familiarize yourself with the interface
Before we discuss each individual block in-depth, let’s look at
the similarities you may find when looking at their masks.

Mask parameters are accessed by double clicking on the block.
A separate window will appear listing that block’s mask
parameters.
Anything said about this block’s mask parameters can be applied to any
block with similar fields.

Block Parameters
MotoHawk has three basic blocks that allow viewable variables
to appear in MotoTune: calibrations, displays, and probes.
Note that MotoTune makes probes a display variable, so a probe will appear
in the display portion of MotoTune.

Name : This field can be any MATLAB expression (such as
those in the Motohawk_can_example.m file above) or a string,
so that it can be called from other MATLAB functions.
If a string is used, make sure to enclose the string in single quotes.

Default Value : This is the value that takes effect from
the first time of programming. It remains in effect until it is
changed using MotoTune.

Behavior : This is where you decided what type of memory
this variable will be stored in.
	 Calibration 	 – Flash (prod)
		 – Parallel EEPROM (dev)
	 Display 	 – RAM
	 Calibration NV 	 – Serial EEPROM
	 Display NV 	 – Serial EEPROM

Show Additional Parameters : Click the check box to show
a list of additional parameters to modify for this block.

	

 MotoHawk Resource Guide: Chapter 4 Faults - Page 4

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Block Parameters continued...

	

Use uploaded calibrations values from MotoTune :
This selection indicates if you want the source of this
variable to be a separate MATLAB file or if it may come
from a different source.

The MotoHawk upload calibration feature will make a
MATLAB m-script for every defined vardec, but if a vardec
is generated from a separate piece of software, you want
your model to ignore the value located in the m-script file.

For example, if you were constructing an autonomous
vehicle that included GPS coordinates and the
coordinates are generated from a mapping program, you
would deselect this option.

View Value As : MotoTune has been designed to show
data one of three different ways: number, enumeration,
or text. If enumeration is selected, then the Enumeration
field may be used to specify the text associated with the
enumeration. What you see in MotoTune will be the text in
the Enumeration field (On/Off, Start/Run/Stop, etc.) instead
of a number. Be careful to make sure the enumeration text
and numbers align properly.

Enumeration (Cell String, or Struct) : Enumeration
associated with the input when the “View Value As” field
is selected to Enumeration.

Show MotoTune Help and Units : Select to show help
text and units.

Minimum Value : Minimum Value for this vardec.
This will clamp the signal in MotoTune.
If an attempt is made to go below this minimum value, then
MotoTune will display a clamp value message and will force the
value to this minimum value and no lower.
By default the minimum value is –infinity (-inf) to
prevent MotoTune from clamping the value if it is
changed.

Maximum Value : Maximum Value for this vardec.
This will clamp the signal in MotoTune.
If an attempt is made to go above this maximum value, then
MotoTune will display a clamp value message and will force the
value to this maximum value and no higher.
By default the maximum value is infinity (inf) to
prevent MotoTune from clamping the value if it is
changed.

Show MotoTune Precision,
Gain/Offset/Exponent :
Select to show MotoTune Precision information. The
Precision, Gain, Offset, and exponent information is
for MotoTune use only.
This is not to be used to convert analog/digital counts (ADC) to
engineering units.
These values are typically used to allow the designer
of the system to use proper system units, but display
the value in more convenient units in MotoTune
(ie. English units, SI units).

Help Text : Text to aid the MotoTune
users what this vardec does and what
it might effect if changed.
The text shows up automatically with
calibrations. The help text and units
automatically display with calibration
values.
For displays, right click on a variable and select
its properties to view the associated information
including the help text for that variable.

Units : Indicates to the MotoTune
users what units this vardec is
specified in for clarification during
testing and calibration.

Show Min and Max Values :
Select to show min and max values.

 MotoHawk Resource Guide: Chapter 4 Faults - Page 5

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Precision : Sets the default precision for the
variable. The format is: ‘width.decimal’.

For instance, if you wanted the entire width of
the variable to display 6 digits with 4 decimal
places of precision, you would enter ‘6.4’. The
width takes precedence, so if your variable
is six digits, there will be one decimal place
applied. However, if your variable becomes a
seven digit number, then the precision would
expand.

Gain, Offset, Exponent : These values only
apply to how the variable will be displayed in
MotoTune.
These values are not to be used to apply a gain, offset, or
exponent for ADC to Engineering Unit conversion.

The equation is as follows :

MotoTuneValue = (value * gain)exponent + offset

This determines how MotoTune will organize
the data within its messages and how it will be
displayed. So, if MotoTune were to display a
value in 1000’s of RPM, a 1 would appear in
the cell in your display window for a value of
1000RPM.�

Show MotoTune Group : Select this
to specify the MotoTune group.
This entry allows customizing of the
group structure in MotoTune.

Just like the Name field, this value can
be an expression, which means it can
be a function call, just as the default
value is. The default value “motohawk_
vardec_path(gcb)” returns the path
structure of your model.

For instance, if you have a calibration
in a model just under the foreground
task in a model named example,
then by default the calibration will be
located under example/foreground/
calibration in MotoTune.

To specify your own directory structure,
use the vertical bar (pipe) to separate
the paths. So, to put the calibration
in a folder called calibrations under
controller, you would type: ’controller
| calibrations’ in the MotoTune group
field. Remember the single quotes.
MotoTune’s directory structure consists
of folders, pages, and values.

 MotoHawk Resource Guide: Chapter 4 Faults - Page 6

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Calibrations
Calibrations can be described as a MotoTune accessible
Simulink constant block.

Unlike Simulink constant blocks, the MotoHawk Calibration block can only be
used once per declared vardec in the model. However, because a Calibration
is composed of a Data Storage block, you can use a Data_Read block to
access it in other parts of the model.

Calibration : Name
Because the name field is evaluated by MATLAB, the name field
can accept any valid MATLAB expression that returns a string.
Typically, that is useful when masking subystems.

Most of the time, you will explicitly give the calibration a name,
or use the output wire name as a reference for the name.

In example 1, the name for the sine wave frequency calibration
is explicitly defined by selecting Name Source to be Use
Parameter and providing a MATLAB string enclosed in single
quotes in the name field.

Calibration : Name Source
To make a calibration generic to the wire you attach it to, you
can make this selection reference the output wire name as was
done in the SineAmplitude_cal block.
Notice that the name field no longer exists as it did in the
SineFrequency_cal block.

 MotoHawk Resource Guide: Chapter 4 Faults - Page 7

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Calibration : Default Value
Because the default value field is evaluated by MATLAB, the
field can be any valid MATLAB expression that returns a number.
This is the constant value this block will output unless calibrated by MotoTune
to be something else. This can also be used to specify the data type.

What are valid MATLAB expressions?
Matlab expressions can be workspace variables or MATLAB
functions that return a number. Commonly, an m-script is
made with calibration values stored by name. This m-script is
called and all the calibrations are loaded in the workspace and
the default values reference those values.

Calibration : Output Data Type
Here is where to explicitly set the data type, or allow it to
inherit via back propagation. Inherit via back propagation
forces the data type decision based on how the calibration is
used. By default, it inherits from the default value, which will
be double if not specified.

Be careful – it is easy to drop calibrations all over the model, but if you
allow them all to be doubled, you may be wasting memory.

Calibration : Access Levels

 MotoHawk Resource Guide: Chapter 4 Faults - Page 8

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Calibration - Behavior
How will a user interact with this calibration? Will it be seen
in the display or calibration window? Does it need to be
accessible even on a production module?

In Example 2,
The Maintenance Interval Reset was specified as DisplayNV.
This allows the value to be accessible, even on a production
unit, so maintenance personnel can reset the alarm once
maintenance has been performed.

In example3,
The calibrations are set to Display. The vardecs will still be
stored in flash or parallel EEPROM, but will show up in the
display pane of MotoTune and not the calibration pane.

 MotoHawk Resource Guide: Chapter 4 Faults - Page 9

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Calibration : View Value As
How will the MotoTune user view the data: text, number,
or enumeration? Most calibration will take on the form of a
number, but enumerations can also be useful.

Notice in the Override_abs block for the PWM signal,
the PWM_ovr_ovr calibration is an enumeration of “pass-
through or Override.”

Viewing this calibration in the display window of MotoTune will give you the
selection of Pass Through or Override and not a 0 or 1. This is a much more
explicit representation to the MotoTune user. The enumeration value is also
any valid matlab expression that returns a cell array of strings.

Calibration : MotoTune Help/Units
Help and Unit information for MotoTune user.

Notice the help text and unit information that is displayed next
to the calibration.

If the vardec is specifed as a display, you must right click on
the value and go to Properties/More to view its help and unit
information.

 MotoHawk Resource Guide: Chapter 4 Faults - Page 10

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Calibration : MotoTune Min/Max
In the SineFrequency_cal a minimum and maximum was
specified.

If you attempt to calibrate the value outside of the range,
MotoTune will generate an error and inform the user it is
outside the specified range.

Very useful to ensure a calibration is not accidently changed outside of a
specified range. This min and max takes into consideration any gain, offset,
or exponent that was applied to the value.

 MotoHawk Resource Guide: Chapter 4 Faults - Page 11

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Calibration : MotoTune Precision
	Gain/Offset/Exponent

MotoTuneValue = (value * gain)exponent + offset

Precision is specified as a string or a valid MATLAB expression
that returns a string in the format of width.decimal. The
decimal will take precedence if the number becomes larger
than the width specified on the left hand side of the decimal
and will always maintain the specified decimal precision.

The width is specified to be 3 with 1 decimal precision.
When the number is larger than 99.9, 1 decimal precision is maintained
and the number increases to a width of 4 to display 100.0.

If the vardec is writable like a calibration, and the value is
entered as 10.35, MotoTune will round the value up and
display 10.4 to maintain the specified decimal precision.
The rounding is merely for display purpose only and the value is actually
10.35. To see this you can change the precision in MotoTune to use 2
decimal precision and then the number would be displayed as 10.35.
Changing variable precision from MotoTune is covered in the MotoTune chapter.

Gain/Offset/Exponent is used to display and calibrate the
value differently than the actual use of the value down stream
of the calibration block.
The default value is 1, but the value will be multiplied and
scaled by the specified gain, offset, and exponent to be
displayed in MotoTune as 10.

When changing the value in MotoTune — the above equation
reverses.
In this case the value changed in MotoTune will be divided by 10.

 MotoHawk Resource Guide: Chapter 4 Faults - Page 12

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Calibration : MotoTune Group

This is a valid Matlab expression that returns a string with
folders separated by the vertical bar. It is used to organize
system values into groupings that facilitate specific functions,
such as in calibration or maintenance.

By default this value runs a function called motohawk_vardec_
path(gcb,) thus the location of each vardec will be the same as
the model.

Open Simulink’s Model Browser (View/Model Browser
Options/Model Browser)
Notice the similarity of the model browser’s tree and the MotoTune tree.
The vardecs in this example have not yet been put into any specific
MotoTune Groups.

You can also specify your own string with the MotoTune folder
name separated by the vertical bar.

 MotoHawk Resource Guide: Chapter 4 Faults - Page 13

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Probes
Probes are read only displays stored in RAM. A MotoHawk
Probe is similar to Simulink’s native display block and scope
block. Probes can be very helpful when testing and debugging,
but if used carelessly, they can use more RAM than necessary.

Probes will require extra memory when the wire it is placed on
is not already being kept around between execution cycles in
the system. Meaning if the control system design requires the
value of a particular wire to retain its value between cycles, the
value will be allocated memory space. Probing such a wire will
not add any further memory because the optimizer recognizes
the two values to be the same and they both reference the
same memory location. However, if the signal is not kept by
the control system, then adding a probe will require more
memory.

Remember – There are only 1,793 available vardec definitions. For 99% of
the applications, this is more than enough room, but if your application uses
many tables, the number of vardecs in your model can grow very rapidly.

Probe : Name
Because the name field is evaluated by Matlab, the name field
can accept any valid Matlab expression that returns a string.
Typically, this is valuable when masking subsystems. Most of
the time you will explicitly give the probe a name or use the
input wire name as a reference for the name.

In example1 of the vardec_example.mdl, the sawtooth wave
probe (SawtoothWave_prb) has an explicitly defined name.
The sine wave probe (SineWave_prb) uses the input wire
name as its name reference.

Probe : Name Source
To make a probe generic to the wire you attach it to, you can
make the block reference the input wire name as was done in
the SineWave_prb block.

Notice the name field no longer exists like in the SawtoothWave_prb block.

	

 MotoHawk Resource Guide: Chapter 4 Faults - Page 14

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Probe : Read Access Level
Access level is a value from 1 through 4 (most open through
most restricted.) There is a comparable access level written
on each MotoTune dongle.

By default, MotoHawk dongles are given an access level of 4.
This means that the dongle can access any vardec with access 4 or below.
Since 4 is the highest, it can access everything in the model.

By default, access levels in the MotoHawk blocks are set to 1.
This means that anyone with a dongle of access level 1 or above may access
this block. Since 1 is the lowest, it can be accessed by everyone.

To restrict access with the MotoTune dongle, you will need
to purchase dongles with access levels 1, 2, or 3 and
change the appropriate access levels for each block with
MotoTune interface.
A probe can only be read by a user, so there is only a read access level.

Probe : View Value As
How will the MotoTune user view the data: text, number, or
enumeration? Most probes will take on the form of a number,
but enumerations can also be useful.
Only consider using an enumeration for a probe block when the wire you are
probing has predictable values. If the input to the probe does not exist in the
enumeration, the probe will display “undefined” in the MotoTune window.

Probe – MotoTune Help / Units
Help and Unit information for MotoTune user.

For a probe, right click on the value of the probe
and select properties. Another small window will appear, then
hit “More” to display information about the probe.

 MotoHawk Resource Guide: Chapter 4 Faults - Page 15

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Probe : MotoTune Precision Gain/Offset/Exponent

MotoTuneValue = (value * gain)exponent + offset

Precision is specified as a string or a valid MATLAB expression
that returns a string in the format of width.decimal. The
decimal will take precedence if the number becomes larger
than the width specified on the left hand side of the decimal
and will always maintain the specified decimal precision.

The width is specified to be 3 with 1 decimal precision.
When the number is larger than 99.9, 1 decimal precision is maintained
and the number increases to a width of 4 to display 100.0.

If the vardec is writable like a calibration, and the value is
entered as 10.35, MotoTune would round the value up and
display 10.4 to maintain the specified decimal precision.
The rounding is merely for display purposes only and the value is actually
10.35. To see this you can change the precision in MotoTune to use 2
decimal precision and then the number would be displayed as 10.35.
Changing MotoTune precision from MotuTune is covered in the MotoTune
chapter.

Gain/Offset/Exponent is used to display and calibrate the
value differently than the actual use of the value down stream
of the calibration block.
The default value is 1, but the value will be multiplied and
scaled by the specified gain, offset, and exponent to be
displayed in MotoTune as 10.

When changing the value in MotoTune — the above equation
reverses.
In this case the value changed in MotoTune will be divided by 10.

Probe – MotoTune Group
This is a valid Matlab expression that returns a string with
folders separated by the vertical bar.
By default this value runs a function called motohawk_vardec_
path(gcb). The location of each vardec will be the same as the
model.

 MotoHawk Resource Guide: Chapter 4 Faults - Page 16

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

If you turn on Simulink’s Model Browser, you will notice the
similarity of the model browser’s tree and the MotoTune tree
with the vardecs that have not yet been put into their respective
MotoTune Groups. This is good if the Controls Engineer is
also doing the testing, but for a calibrator, the levels may get
too deep and you may want to specify a better, easier to use
MotoTune layout. You can also specify your own string with the
MotoTune folders separated by the horizontal bar.

Overrides
Overrides are inline calibrations and have both an input and an
output. There are two different types of override blocks. Both
blocks create two vardecs that can be manipulated within the
display window of MotoTune.

The override relative block is a way to lock the output and
apply an offset. It was designed around some legacy software
and is typically not a block that a control system will use.

The override absolute enables the MotoTune user to ignore the
input and use a specified value. Notice how under the PWM_
ovr Override_Absolute block is two blocks with _ovr and _new
appended to the base name given under the mask.

Override : Name
Because the name field is evaluated by MATLAB, the name
field can accept any valid Matlab expression that returns a
string. This is typically valuable when masking sub-systems.

Override : Name Source
Similar to calibrations and probe blocks, the override blocks
can inherit a name via the input or output wire name.

If you select either of these choices, the “Name” field
disappears. Then, by specifying an appropriate name on the
wire attached to the block, the name will change to this value.
When using the wire name to identify a vardec, avoid using spaces or
special characters.

 MotoHawk Resource Guide: Chapter 4 Faults - Page 17

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Override : Override Access Level
Access level is a value from 1 (most open) through 4 (most
restricted). There is a comparable access level written on each
MotoTune dongle.

By default, MotoHawk dongles are given an access level of 4.
This means that the dongle can access any vardec with access 4 or below
and since 4 is the highest means it can access everything in the model.

By default, access levels in the MotoHawk blocks are set to 1.
This means that anyone with a dongle of access level 1 or above may access
this block and since 1 is the lowest means it can be accessed by everyone.

To restrict access with the MotoTune dongle, you must purchase
dongles with access levels 1, 2, or 3 and change the appropriate
access levels for each block with a MotoTune interface.

Override : View Value As
How will the MotoTune user view the data: text, number,
or enumeration? Most overrides will take on the form of a
number, but enumerations can also be useful.

Notice in the Override_abs block for the PWM signal, the
PWM_ovr_ovr calibration is an enumeration of “Pass-Through
or Override.” Viewing this calibration in the display window
of MotoTune will give you the selection of Pass Through or
Override and not expect a number 0 or 1. This is much more
explicit representation to the MotoTune user.

The enumeration value is also any valid MATLAB expression
that returns a cell array of strings. Make sure your enumeration
order is specified correctly to avoid any possible confusion
when changing the value in MotoTune.

 MotoHawk Resource Guide: Chapter 4 Faults - Page 18

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Override : MotoTune Help/Units
Help and Unit information for MotoTune user.

To display help and unit information for an override, right click
on the value, select “Properties / More” to view the help and
unit information.

Override : MotoTune Min/Max
In the PWM_ovr, a minimum and maximum was specified.
In an attempt to calibrate the value outside of the range,
MotoTune will generate an error and inform the user it is
outside the specified range.
Useful to ensure a calibration is not accidentally changed outside of a range.

	

 MotoHawk Resource Guide: Chapter 4 Faults - Page 19

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Override : MotoTune Precision
	Gain/Offset/Exponent
MotoTuneValue = (value * gain)exponent + offset

Precision is specified as a string or a valid MATLAB expression
that returns a string in the format of width.decimal. The
decimal will take precedence if the number becomes larger
than the width specified on the left hand side of the decimal
and will always maintain the specified decimal precision.

The width is specified to be 3 with 1 decimal precision.
When the number is larger than 99.9, 1 decimal precision is maintained and
the number increases to a width of 4 to display 100.0. (Fig12)

If the vardec is writable like a calibration, and the value is
entered as 10.35, MotoTune would round the value up and
display 10.4 to maintain the specified decimal precision.
The rounding is merely for display purposes only and the value is actually
10.35. To see this you can change the precision in MotoTune to use 2
decimal precision and then the number would be displayed as 10.35.
Changing MotoTune precision from MotuTune is covered in the MotoTune
chapter.

Gain/Offset/Exponent is used to display and calibrate the
value differently than the actual use of the value down stream
of the calibration block.
The default value is 1, but the value will be multiplied and
scaled by the specified gain, offset, and exponent to be
displayed in MotoTune as 10.

When changing the value in MotoTune — the above equation
reverses.
In this case the value changed in MotoTune will be divided by 10.

 MotoHawk Resource Guide: Chapter 4 Faults - Page 20

Phone:  877.234.1410 support@neweagle.net www.neweagle.net

Override : MotoTune Group
This is a valid Matlab expression that returns a string with
folders separated by the vertical bar. By default this value runs
a function called motohawk_vardec_path(gcb). The location of
each vardec will be the same as the model.

If you turn on Simulink’s Model Browser, you will notice the
similarity of the model browser’s tree and the MotoTune
tree with the vardecs that have not yet been put into their
respective MotoTune Groups.

The default value for the MotoTune group is good for developers that are
familiar with the code. To make it easier for calibrators, test engineers, or
other individuals who will use MotoTune, but is unfamiliar with the actual
code, you will want to specify a better, easier to use, layout.

You can also specify your own string with the MotoTune folders
separated by the horizontal bar.

	

	NewEagle_MotoHawk Resource Guide - Cover
	New Eagle MotoHawk Training Supplement_web
	NewEagle_MotoHawk Resource Guide - ch1 Intro
	NewEagle_MotoHawk Resource Guide - ch2 Faults
	NewEagle_MotoHawk Resource Guide - ch3 CAN web
	NewEagle_MotoHawk Resource Guide - ch4 Memory

