
Fixed Point 
 
Overview 
When designing algorithms, it is necessary to have some basic knowledge of how the computer processes basic 
instructions.  This is especially true with embedded applications because these processors have vastly different 
capabilities; the algorithm designer must account for these differences to avoid allocating superfluous amounts of memory 
and/or consuming excessive processor time. 
 
Simple mathematical operations (addition, multiplication, etc.) can have a dramatic impact on the overall performance of 
an application, and the effect of this impact is related to the type of math that is natively supported in the processor 
hardware.  The terminology “fixed point” often refers to the decimal point being in a fixed location for a given mathematical 
operation; oppositely, “floating point” implies a variable decimal point location.  Floating-point processors have a device 
called a floating point unit (FPU) that will perform floating point operations very quickly.  Fixed-point processors do not 
have a FPU and thus don’t natively support floating-point operations; instead, floating point operations are emulated in 
software on a fixed-point processor and are therefore computationally expensive. 
 
Some considerations when evaluating whether to use fixed point or floating point: 
 

- Floating-point computations are extremely computationally expensive on a fixed-point processor. 
- On a floating-point processor, floating-point operations are more efficient with respect to the number of necessary 

steps (don’t have to apply scales/offsets, round, etc.). 
- Fixed-point data types of 2 bytes or less use fewer resources (flash//RAM/EEPROM/etc.) than floating-point data 

types (which are at least 4 bytes). 
- Floating point is convenient for quick development/testing/debugging (there is no need to protect for rollover, track 

scaling/offsets, etc.). 
 
When developing for a fixed-point processor, the application is limited to integer data types (uint8, int32, etc.).  However, 
there are techniques for managing a decimal points and resolution within a fixed-point algorithm; at some level, all of 
these approaches employ a gain and offset to translate the raw integer value to an engineering value that the user will 
observe in MotoTune.  One approach uses a binary gain in conjunction with a so-called “B-Number”. 
 
B-Numbers:  A Fixed-Point Approach 
 
MotoHawk includes a block set to perform fixed-point operations using a particular property called B-Numbers.  Currently, 
all MotoHawk Fixed Point B-Number blocks have output data types of int16.  Each B-Number corresponds to a unique 
resolution (2^BNum / 65536) and range (spanning 65536 possible raw values) as in the table below.  Note that there is no 
offset, so there is a trade-off on resolution for a larger range. 
 

16-BIT SCALING 
B-Num Min Value Max Value Range Resolution 

-10 -0.000976563 0.000976533 0.001953095 0.000000029802322
-9 -0.001953125 0.001953065 0.00390619 0.000000059604645
-8 -0.00390625 0.003906131 0.007812381 0.000000119209290
-7 -0.0078125 0.007812262 0.015624762 0.000000238418579
-6 -0.015625 0.015624523 0.031249523 0.000000476837158
-5 -0.03125 0.031249046 0.062499046 0.000000953674316
-4 -0.0625 0.062498093 0.124998093 0.000001907348633
-3 -0.125 0.124996185 0.249996185 0.000003814697266
-2 -0.25 0.249992371 0.499992371 0.000007629394531
-1 -0.5 0.499984741 0.999984741 0.000015258789063
0 -1 0.999969482 1.999969482 0.000030517578125
1 -2 1.999938965 3.999938965 0.00006103515625
2 -4 3.99987793 7.99987793 0.0001220703125
3 -8 7.999755859 15.99975586 0.000244140625
4 -16 15.99951172 31.99951172 0.00048828125
5 -32 31.99902344 63.99902344 0.0009765625
6 -64 63.99804688 127.9980469 0.001953125
7 -128 127.9960938 255.9960938 0.00390625



8 -256 255.9921875 511.9921875 0.0078125
9 -512 511.984375 1023.984375 0.015625

10 -1024 1023.96875 2047.96875 0.03125
11 -2048 2047.9375 4095.9375 0.0625
12 -4096 4095.875 8191.875 0.125
13 -8192 8191.75 16383.75 0.25
14 -16384 16383.5 32767.5 0.5
15 -32768 32767 65535 1
16 -65536 65534 131070 2
17 -131072 131068 262140 4
18 -262144 262136 524280 8
19 -524288 524272 1048560 16
20 -1048576 1048544 2097120 32
21 -2097152 2097088 4194240 64
22 -4194304 4194176 8388480 128
23 -8388608 8388352 16776960 256
24 -16777216 16776704 33553920 512
25 -33554432 33553408 67107840 1024

 
 

 
 
As mentioned previously, each range has 16-bit resolution that is equal to 2^BNum / 65536; thus, the scaling is of a binary 
type.  One advantage of binary scaling over other absolute scalings is that the mathematical operations (as described 
subsequently) include multiplying/dividing by 2^N factors, which are actually left/right bit shifts and complete faster on the 
microprocessor than integer multiplies/divides.  Another advantage of binary scaling in conjunction with the B-Number 
method is that certain rules are created that assists the application engineer in mathematical operations and preventing 
overflow. 
 
Operation Rules: 
 

- Addition & Subtraction:  To add/subtract, ensure the operands have the same B-Number.  Note that overflow 
may occur; unless the design inherently prevents overflow, use a MotoHawk Fixed Point Scale block to pre-shift 
the operands to a higher B-Number (to increase range) prior to the operation. 

 

 
 



- Multiplication (using a Motohawk Fixed Point Multiply block):  The result has a B-Number equal to the sum of the 
B-Numbers of the operands, plus 1.  Note that this rule inherently protects against overflow; no pre-shifting is 
necessary. 

 

 
 

- Division (using a MotoHawk Fixed Point Division block):  The result has a B-Number equal to the difference 
between the B-Numbers of the numerator and the denominator, minus 1.  Note that because the denominator can 
approach or equal 0, overflow may occur; the design must protect against this by limiting the minimum value of 
the denominator and/or using a MotoHawk Fixed Point Scale block to pre-shift the numerator to a higher B-
Number prior to the operation. 

 

 
 

- Relational Operators:  When using relational operators, ensure the operands have the same B-Number. 
 

 
 


