
1

CAN
Controller Area Network
(28 October 2009)

MotoHawk Training

2

Notice

THE INFORMATION CONTAINED IN THIS DOCUMENT IS

THE SOLE PROPERTY OF WOODWARD GOVERNOR

COMPANY. ANY REPRODUCTION IN PART OR AS A

WHOLE WITHOUT THE WRITTEN PERMISSION OF

WOODWARD IS PROHIBITED (2009).

3

OUTLINE

•CAN Introduction

•CAN Physical Network

•CAN Message Format

•Using the MotoHawk CAN Blocks

•MotoHawk “Post Office”

•MotoHawk Advanced CAN (Message) Blocks

•CAN Protocol Overview

•CAN Challenge Exercise

4

INTRODUCTION

• CAN = Controller Area Network
 Communication specification implemented for automotive applications

in the 1980s

• Often, the term “CAN” is misused
 CAN is a hardware definition for interoperability between modules

 CAN specification does not state the data content of a given message

 Protocols built on top of CAN state the data content (ex. J1939,
GMLAN)

• MotoHawk doesn’t define a protocol, but allows access to the
CAN hardware to implement any protocol

=== By itself, CAN is not difficult (I mean it) ===

5

OUTLINE

•CAN Introduction

•CAN Physical Network

•CAN Message Format

•Using the MotoHawk CAN Blocks

•MotoHawk “Post Office”

•MotoHawk Advanced CAN (Message) Blocks

•CAN Protocol Overview

•CAN Challenge Exercise

6

PHYSICAL NETWORK

• Two wire robust serial communication

• Minimum two talker-listeners on bus

• Up to 1.0Mbps data rate which is limited
by wire length and design
 100 m @ 250kbps

 30 m @ 1Mbps

• Termination resistance required

• Maximum bandwidth
 2000 messages per second @250kbps

 4000 messages per second @500kbps

 8000 messages per second @1.0Mbps

• Designed bandwidth should not exceed
70% of the maximum bandwidth for
robust arbitration

120 Ω

CAN + CAN -

Wire

Length

7

PHYSICAL NETWORK

• Bus arbitration is handled with a simple strategy
 All modules on the bus attempt to transmit a message at the same

time

 The message with the lowest address wins

• This strategy is handled at the hardware level
 Dominant Bits (0) vs. Recessive Bits (1)

• Multiple modules on the same bus cannot transmit the same
address at the same time – Arbitration fails – Bus crashes

T0 T1 T2 T3

Module A

Module B

Module A (sending 0)

continues to transmit while

Module B (sending 1, sees 0

which does not match its 1)

and thus it stops to wait for

the next opportunity to transmit

8

OUTLINE

•CAN Introduction

•CAN Physical Network

•CAN Message Format

•Using the MotoHawk CAN Blocks

•MotoHawk “Post Office”

•MotoHawk Advanced CAN (Message) Blocks

•CAN Protocol Overview

•CAN Challenge Exercise

9

MESSAGE FORMAT

•A CAN 2.0B Message can contain up to 131 bits
[Overhead] [Address (11 or 29)] [Overhead] [Length] [Payload (0 to 64)] [Overhead]

•As application developers, 3 fields are important:

4 bits determine the length of the data (aka payload)

(Range: 0 to 8 Bytes)

Up to 64 bits of data depending on data length

 ID Format
• Extended IDs are 29 bits

• Standard IDs are 11 bits

• Extended and Standard IDs can exist on the same bus at the same time

• Standard IDs have less message overhead

(higher percentage of data per message)

10

CAN in MotoHawk

OK, now that we know how CAN works…

How do we make it happen in MotoHawk?

11

OUTLINE

•CAN Introduction

•CAN Physical Network

•CAN Message Format

•Using the MotoHawk CAN Blocks

•MotoHawk “Post Office”

•MotoHawk Advanced CAN (Message) Blocks

•CAN Protocol Overview

•CAN Challenge Exercise

12

CAN DEFINITION BLOCK

The CAN hardware needs to be initialized

•Configure the incoming and outgoing queue sizes

•Set the baud rate

•Set the City-ID

•Select or remove MotoTune protocol

 MotoHawk CAN Definition

 Name: CAN_1

 Bus: NONE

Bit Timing: 250 kbaud

 TX Queue: 16 messages

 RX Queue: 16 messages

 MotoTune Protocol Enabled

 City ID: 0x0B (PCM-1)

• If the block settings are not configured properly,

then MotoTune can’t talk to the module via CAN

and therefore programming cannot be performed

via CAN

• Recovery is made with a boot key or boot cable

• Recovery sets CAN baud rate to 250kbps

• Recovery sets City-ID to 0x0B

13

Send CAN Raw Block

TxData = [72 101 108 108 111 32 32 32]

(Display)

TxLength = 8

(Display)

TxID = 239

(Display)

TxIDType = Standard (0)

(Display) MotoHawk Send CAN Raw

 Name: CAN_1

 Interval: Asynchronous

(transmits when block executes)

 ID Type ([std=0, ext=1], bool)

 ID (11-bit or 29-bit, uint32)

 Length ([0-8], uint8)

 Data (0-8 bytes, uint8)

Simple send message block with ASCII text “Hello ”

14

• CAN Bus Test
 Construct a calibratable CAN message transmitter

 Use CANKing to monitor bus traffic

System Diagram

CAN Exercise #1

16

OUTLINE

•CAN Introduction

•CAN Physical Network

•CAN Message Format

•Using the MotoHawk CAN Blocks

•MotoHawk “Post Office”

•MotoHawk Advanced CAN (Message) Blocks

•CAN Protocol Overview

•CAN Challenge Exercise

17

POST OFFICE - Description

• CAN is the hardware layer, so how

 are transmitted messages sorted

 and filtered in MotoHawk?

• A Post Office offers the simplest

 analogy

Mailboxes

Letters

Name, House #, Street, City, State, Zip

Copy Machine

Doorbell

18

POST OFFICE - Sorting

Many messages are transmitted on a bus in turn, but a module

may only be interested in a small subset requiring sorting

Sorting (filtering) is done at two distinct layers:

 In hardware using the specific buffers on your target

module’s CAN chips

 In software using a custom dispatcher for your messages

This is similar to a post office where the CAN messages are

letters and the hardware/software dispatcher built by

MotoHawk is the postman

19

POST OFFICE - Sorting

MotoHawk abstracts this to a single interface with Identifiers

(CAN addresses) and Masks (which parts to care about)

• A “mail box” in MotoHawk is called a ‘Slot’

• This mail ‘Slot’ has a CAN address call an ID (Identifier)

(29 bits long or 11 bits long, both are supported)

• The ‘ID’ uses a ‘Mask’ to tell the MotoHawk postman which

parts of the address to care about and which parts to ignore

 Care about bits 28 through 8, but not 7 through 0 of a 29-bit address.

This equates to care about the house #, street, city state, zip, but not

the name on the envelop, for instance.

20

POST OFFICE - Sorting

MotoHawk sorting can be done in two places:
• ID Filtering: Message are sorted by the ID (address) using the ID-Mask

(tells which bits of the ID to care about)

 ---- This works for 11-bit and 29 bit addresses ----

• Payload Filtering: Message may be sorted by the data content using the
Data (as additional address space) and a Data-Mask (to tell which bits of
the data to use as address space)

21

Filtering is best understood in binary math
• The mask contains a “1” in any bit location that will be used in

the sort and a “0” in any location where the address data may
vary

• Proceed bit by bit to build the slot

An 11-bit example is shown:
• ID = 0x7E4 (111 1110 0100) what it should be

• ID mask = 0x7FC (111 1111 1100) 1 = care, 0 = don’t care

• the resulting in slot looks for (111 1110 01XX) X = either 0 or 1 allowed

• If incoming ID = 0x7E5, (111 1110 0101)

message goes into the mailbox

• If incoming ID = 0x7F4, (111 1111 0100)

x message is rejected by the mailbox

• If incoming ID = 0x7E7, (111 1110 0111)

message goes into the mailbox

POST OFFICE - Sorting

22

POST OFFICE - Sorting

Like with the ID and Mask, sorting can be done with a

Payload-Value and Payload-Mask as well
• Payload Value = 0x(01, 00, …., 00, F6)

 (0000 0001, 0000 0000, …. 0000 0000, 1111 0110)

• Payload Mask = 0x(7F, 00,, 00, FE)

 (0111 1111, 0000 0000, …. 0000 0000, 1111 1110)

• the resulting payload slot filter looks for

 (X000 0001, XXXX XXXX, …. XXXX XXXX, 1111 011X)

Thus:

• If incoming ID gets through, and has the payload

• = 0x(81, 12, …. 3C, F7)

 (1000 0001, 0001 0010, …. 0011 1100, 1111 0111)

message goes into the mailbox

23

POST OFFICE - Read CAN Raw BLOCK

RxAgeCount

RxData

RxLength

RxId

RxIdType

Fault: Rx700old

[1 of 1] (Enabled)

Rx700AgeMax_sec = 0.1

(Calibration) <=

 MotoHawk Read CAN Raw

 Name: CAN_1

 Slot: Rx700

 Queue Size: 0

 ID Type: Standard

 ID: 0x700

 ID Mask: 0x7FC

Age Count

ID Type ([std=0, ext=1], bool)

ID (uint32)

Length ([0-8], uint8)

Data (0-8 bytes, uint8)

200

Age [counts]

MaxAge [Counts]

RxData

RxLength

RxId

RxIdType

 do {

 ...

 } while

cond

While Iterator
 MotoHawk Read CAN Raw

 Name: CAN_1

 Slot: Rx600

 Queue Size: 5

 ID Type: Standard

 ID: 0x600

 ID Mask: 0x7FC

Data Available

ID Type ([std=0, ext=1], bool)

ID (uint32)

Length ([0-8], uint8)

Data (0-8 bytes, uint8)

Faster message implementation empties queued messages

Slower message implementation with “stale” data check

24

POST OFFICE – Configure Mail Box

• Name – Logical CAN bus name
from definition blocks

• ID Type 11-bits or 29-bits

• Settings for the ID, ID Mask,
Payload (address) Value, and
Payload Mask explained earlier

• Queue size - how many
messages to store (0 or 1 = 1)

• Slot Name used with ‘Slot
Properties’ block to change mail
box parameters at Run-Time

• Data Available and Age Count
adds ports as needed

25

POST OFFICE

• The properties of a mailbox can be changed at run time using the
‘MotoHawk CAN Receive Slot Properties’ block

• The filters determined at design time in the MotoHawk CAN receive
blocks can be strengthened (made more restrictive), but cannot be
weakened (made less restrictive)

• Modifications to the sorting filter may be done on ID or payload data
fields.

• A CAN receive block and its slot properties block are linked by the ‘Slot’
name

ID Filter Controls

Payload Filter Controls

26

POST OFFICE

• We can have the postman ring your doorbell when he
delivers a message?
 May be used to record time of arrival

 May be used for high operation priority code based on reception

 May be used to synchronize software between modules over CAN

 May be used to quickly reply to an asynchronous message without
periodically polling for the message

• How does MotoHawk implement this
situation?
 CAN Receive Slot Trigger Block function calls

a sub-system when its CAN message is
received.

 ‘Slot’ name in this block must match the slot
name specified in its corresponding ‘Read CAN
Raw’ block or ‘Read CAN Message’ block

27

OUTLINE

•CAN Introduction

•CAN Physical Network

•CAN Message Format

•Using the MotoHawk CAN Blocks

•MotoHawk “Post Office”

•MotoHawk Advanced CAN (Message) Blocks

•CAN Protocol Overview

•CAN Challenge Exercise

28

MOTOHAWK ADVANCED CAN

•The Read and Send CAN blocks are nice, but

sometimes more advanced data parsing is

necessary. Common questions:

 I have 12 bit scaled data that spans across multiple bytes.

How do I convert it into engineering units?

 I have more data that can fit into 64 bits. How do I create

multi-page messages?

 I’m using a protocol that has a variable ID. How do I

dynamically create the ID easily?

•These are valid questions and there is an answer…

29

MOTOHAWK ADVANCED CAN

• MotoHawk has 2 blocks – Read CAN Message and Send CAN Message
(below)

• These blocks allow users to set up multi-page documents and parse and
scale both changing IDs an variables

30

MOTOHAWK ADVANCED CAN

Motohawk Read Can

Message block

• Uses same definition file

as transmit

• Works with Slot

Properties block

• Works with Slot Trigger

block

• Age-Count port optional

• Data-Available port

optional

• Name Wires optional

Temperature

AgeCount

AverageRadius

Enable

NodeID

Fault: Rx700old

[1 of 1] (Enabled)

ExampleMessageMask = 2047

(Calibration)

ExampleMessageID = 497

(Calibration)

RxExampleMessageTimeMax_sec = 0.1

(Calibration) <=

MotoHawk Read CAN Message

Name: CAN_1

Slot: ExampleSlot

Protocol: ExampleProtocol

Source Module: PCM-1

Interval: 100 ms (10 Hz)

Queue Size: 1

ID: 0x000001f0 (STANDARD)

Mask: 0x000007f0

RTR: 0

Message: ExampleMessage

Description: Example message used as template in MotoHawk models

Payload Size: 8

ID Contents:

 Name| Units| LSB| Len| Type| Byte Order| Gain| Offset

--

 Node ID| | 0| 4| UNSIGNED| BIG_ENDIAN| 1.000| 0.000

Payload Contents:

 Name| Units| LSB| Len| Type| Byte Order| Gain| Offset

--

 Enable| -| 63| 1| UNSIGNED| BIG_ENDIAN| 1.000| 0.000

 Average Radius| m| 44| 12| SIGNED| BIG_ENDIAN| 1/10.000| 0.000

 Temperature| degK| 32| 12| SIGNED| BIG_ENDIAN| 1/100.000| 250.000

Age Count

Node ID

Enable

Average Radius

Temperature

200

f unction()

ExampleMessageSubsystem

MotoHawk CAN Receive

Slot Trigger

Slot: ExampleSlot

(Used in triggered subsystem)

MotoHawk CAN Receive

 Slot Properties

Slot: ExampleSlot

Filter ID

ID Value (uint32)

ID Mask (uint32)

AgeCount

MaxAge [Counts]

Node ID

Enable

Av erage Radius

Temperature

31

MOTOHAWK ADVANCED CAN

Both MotoHawk advanced CAN blocks are specified using

one type of message definition file

We have included an example of this file in MotoHawk as well

as another in the CAN file folder in your MotoHawk Project

From the command line, type:

>> edit motohawk_can_example.m

32

• “Endianness” refers to the order in which bytes are stored in memory

(Intel vs. Motorola…..LSB vs. MSB first in memory)

• Terminology originates from “Gulliver’s Travels” from the war over “from

which end to eat a hard-boiled egg”

• This example shows the 4 byte storage for 1025 (0x401)

• By default, MotoHawk CAN scripts use ‘Big-Endian’ byte ordering, but do

‘Little-Endian’ just as easily

• Unpack must occur in the same order as the bytes are packed

Address Big Endian

Representation

Little Endian

Representation

00 0000 0000 0000 0001

01 0000 0100 0000 0000

02 0000 0000 0000 0100

03 0000 0001 0000 0000

LITTLE ENDIAN vs BIG ENDIAN

33

63...….56

55...….48

47...….40

39...….32

Our example shows byte ordering for a 2 byte variable (uint16)

• Both start with the least significant bit of the least significant byte at bit 48

• Both fill from least significant bit toward most significant bit

• Both orders “wrap” at byte boundaries only:

• Big endian wraps upward into the lsb of the preceding byte (ahead)

• Little endian wraps downward into the lsb of the byte below (to follow)

We care only so that the unpack matches whatever pack was chosen

LSB

MSB

Little Endian

MSB

LITTLE ENDIAN vs BIG ENDIAN

LSB

Big Endian

lsb lsb

msb

msb

CAN

Transmission

Order

First

Last

34

OUTLINE

•CAN Introduction

•CAN Physical Network

•CAN Message Format

•Using the MotoHawk CAN Blocks

•MotoHawk “Post Office”

•MotoHawk Advanced CAN (Message) Blocks

•CAN Protocol Overview

•CAN Challenge Exercise

35

PROTOCOL OVERVIEW

A protocol is NOT CAN! It is a language on CAN.

• CAN defines our post office and mail slots

• Protocols define the content of the letters, the adress

structure, ect. They are like French or English or German

used to tell a story. Our post office will deliver “letters” written

in any of them.

Does MotoHawk speak J1939?

Does MotoHawk do GM LAN?

Does MotoHawk implement NMEA-2000?

Does MotoHawk support Mercury SmartCraft

Answer: Yes! but only in so far as the application does.

36

PROTOCOL OVERVIEW

• CAN only gets complicated when protocols are considered

J1939, SmartCraft, CCP, GMLAN, etc. are all examples of

protocols that define and adhere to strict rules about the

message address and contents

Protocols like J1939 use PGNs to define messages

• Simulink and/or Stateflow in your application, used with the

MotoHawk CAN blocks, is/are able to implement virtually any

CAN based protocol

• Some message formats (J1939 for example) have already

been implemented in CAN message definition files and are

available

37

OUTLINE

•CAN Introduction

•CAN Physical Network

•CAN Message Format

•Using the MotoHawk CAN Blocks

•MotoHawk “Post Office”

•MotoHawk Advanced CAN (Message) Blocks

•CAN Protocol Overview

•CAN Challenge Exercise

38

•Create a distributed control system to control

the ETC over CAN

 Pedal Cnts

Duty Cycle %

TPS

CAN message 0x600 receive

Analog TPS Signal

TPS Cnts

CAN message 0x500 send

ETC

Duty Cycle %

CAN message 0x600 send

TPS Cnts

CAN message 0x500 receive

City ID

0x0C

City ID

0x0B

CLASS CAN CHALLENGE

ETC Pos Cnts

CAN message 0x500 receive

CAN message 0x500 send

39

CLASS CAN CHALLENGE

• Control ETC Remotely via CAN. You will Receive Slider Position and ETC

Position via a message and send PWM duty Cycle via a message.

• RX Message (from instructor case):
 ID: 0x500 (Std)

 Rate: 10mSec Payload Size: 5

 Content:

• Slider Position, unsigned 10 bits, start bit 40, little endian, ADC counts

• TPS Position, unsigned 10 bits, start bit 38, little endian, ADC counts

• Tx Message (to instructor case):
 ID: 0x600 (Std)

 Rate: 10mSec Payload Size: 3

 Content:

• PWM Duty Cycle, signed 16 bits, start bit 48, big endian, PWM %, 1/256 %/cnt

• PWM Enable, boolean 1 bit, start bit 40, big endian, 1=Enable PWM

• (Note, % goes from -100 to 100 in engineering units)

MotoTron Control Solutions
Production Controls in a Flash

