

OBD Fault Manager Introduction

Woodward

Engine Systems

This presentation is intended only for the individual or entity to which it is addressed and may contain information that is the Confidential and/or Proprietary Information of Woodward Governor Company, the disclosure of which may be in violation of applicable law. If you are not the intended recipient, or an employee or agent responsible for delivery to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this message is strictly prohibited and you are requested to notify us immediately by telephone.

Outline

Existing MotoHawk Fault Manager

Strengths/Weaknesses

Introduction to the OBD Fault Manager

- Concepts
- Blocks

Questions

Fault Manager Highlights

- Distributed fault detection
- Marquees display the current states
- 3 fault states with 6 modes
- User has blocks to iterate through faults
- Fault actions decouple detection logic from response logic

What is "OBD Compliant"?

- The details depend on where the application will be deployed
 - Most countries have active or pending regulations
 - Regulation "sharing"
 - Protocol support impacts

OBD compliance is a long and arduous task

- Emissions regulations
- Separation of normal vs. emissions-related faults
- Bureaucratic governments
- Regulation interpretation
- High quality and well tested diagnostics
- Failed component testing
- Documentation

Fault Manager Limitations

- No concept of "Drive Cycle" which is critical for bookkeeping purposes
- All faults have the same category. There is no distinction between emissions-related faults and normal faults.
- Fault related data is difficult to implement in Simulink because there is no built in support
 - Protocol integration is difficult
- Existing fault states do not correspond to legislated definitions of required fault states (suspected, active, occurred)
- No concept of "Permanent" faults

Introducing the OBD Fault Manager

• What is the OBD Fault Manager?

- It is a new Fault Manager designed to accommodate OBD compliant systems.
- Intended to be flexible enough to satisfy multiple OBD standards
- Intended to function elegantly with many different types of protocol handlers

What does it do?

- It contains 12 states that track the progress of a fault from initial detection to fault storage to clearing.
- Introduces new features for fault action routing that are not present in the Fault Manager.
- Introduces the concept of "Fault Related Data"
- Introduces the concept of drive cycles

What does it not do?

 By itself, it does not satisfy all OBD requirements. An OBD infrastructure still needs to built in the application.

OBD Fault Manager Concepts

- Fault States
- Fault Action Routing
- Fault-related Data

OBD Fault Manager Concept – Fault States

 Fault States – The ability to map a particular unit of data (e.g. Occurrence Counts) to a particular fault in the application.

• Fault Manager:

- 3 states
 - Suspected
 - Active
 - Occurred
- 6 modes
 - Disabled
 - Enabled
 - Sticky
 - Enabled Persistent
 - Sticky Persistent
 - Save Occurred

OBD Fault Manager:

- 12 states (described in the following slides)
- Protocol features are enabled (e.g. Readiness, Previously Active, 14229-1 states, etc.)

OBD Fault States

Name	Storage Type	Clear Condition	Description
Suspected	Volatile	Fault definition input is low	This is the initial observation of fault behavior. It is prone to "noise" and is thus put through a X of Y filter to determine whether the fault is Pending or not. Both the X and Y counters are reset if the X limit or the Y limit is exceeded.
Pending	NonVolatile	Mark To Clear block parameter is set to "Pending "and the inhibit input is 0 at least once during a drive cycle. The state is deactivated at the end of the drive cycle. A fault clear will also deactivate this state.	If the fault logic determines that a fault is pending (i.e. it was detected at least X out of Y samples), then the Pending state is activated. This will be known as the pending filter .
Confirmed	NonVolatile	Mark To Clear block parameter is set to Confirmed and the inhibit input is 0 at least once during a drive cycle. The state is deactivated at the end of the drive cycle. A fault clear will also deactivate this state.	A fault is considered confirmed if it has passed the pending filter mentioned above in X of Y <i>completed</i> drive cycles. The default value for each fault is set via the Drive Cycles and Total Drive Cycles parameters. The Drive Cycles and Total Drive Cycles can be set to 0 if a fault should be confirmed immediately.

OBD Fault States (cont'd)

Ready	NonVolatile	Mark To Clear block parameter is set to Ready and the inhibit input is 0 at least once during a drive cycle. The state is deactivated at the end of the drive cycle. A fault clear will also deactivate this state.	The ready status denotes that the pending filter has been executed to completion at least once. This state latches that value.
Failed This Drive Cycle	Volatile	Clears at the end of the drive cycle	Failed This Drive Cycle latches a fault detection from the pending filter once per drive cycle. It is present to ensure that the Drive Cycle counts only increment once in a given drive cycle.
Test Complete This Drive Cycle	Volatile	Clears at the end of the drive cycle	This is similar to Ready, but is not latched in NonVolatile. If a fault detection has executed to completion, then this state is activated.

OBD Fault States (cont'd)

	NonVolatile	Mark To Clear block parameter is set to	MIL Request is intended to assist the
with Request		MIL Request and the inhibit input is 0	user with illuminating the MIL light in
		at least once during a drive cycle. The	their application. The fault manager
		state is deactivated at the end of the	does not attempt to control an output in
		drive cycle. A fault clear will also	the module. Instead, it notifies the user
		deactivate this state	when a fault should be turning on the
			when a fault should be turning on the
			MIL. If a fault is "emissions-related" and
			activates the confirmed state, then the
			MIL Request state will also be activated.
			It is the responsibility of the user to
			manage the state.
Previously	NonVolatile	Mark To Clear block parameter is set to	Active and Confirmed are
		Previously Active and the inhibit input	interchangeable within the OBD fault
Active		is 0 at least once during a drive cycle.	Manager. The Previously Active state
		The state is deactivated at the end of	informs the user whether a fault had an
		the drive cycle. A fault clear will also	active confirmed state and transitioned
		deactivate this state.	to inactive at some point. It latches this
			value.
Permanent	NonVolatile	Mark To Clear block parameter is set to	The permanent state is similar to
r crinalicite		Permanent and the inhibit input is 0 at	Confirmed except that the state is only
		least once during a drive cycle. The	activated if it is calibrated as a
		state is deactivated at the end of the	Permanent fault.
		drive cycle. A fault clear will NOT	
		desetivets this state	
		deactivate this state.	

OBD Fault States (cont'd)

Test Failing	Volatile	A detection cycle that does not detect the fault must occur.	This state reports the most recent Suspected X/Y detection results. It is similar to Pending except the state does not latch in the "active" state.
Test Failed Since Last Clear	NonVolatile	Fault clear will deactivate this state.	This state is active if a fault has failed since a fault clear command occurred.
Failed Last Drive Cycle	NonVolatile	Clears at the end of the current drive cycle if a fault did not occur	This state reports whether the fault failed on the previous drive cycle.

- NonVolatile fault states do not "self heal"
- Intervention by the application is necessary
- This is called "bookkeeping" and usually occurs at the end of a drive cycle

OBD Fault States

Engine Systems

OBD Fault Manager Concept – Fault Action Routing

- Fault Action Routing links fault state(s) to recovery or other types of logic in the application
 - Examples : Limp home, MIL illumination

• Fault Manager:

- Fixed number of action routes (4)
- All routes can be calibrated

• OBD Fault Manager:

- Adjustable number of action routes
- Routes can be fixed (no calibrations)

OBD Fault Action Routing

OBD Fault Action: MyFaultAction

I	OBD Fault Action Route Defaults		
I	ault Action Route Contents:		
	Fault Action Route Name Fault Name Fault Action Fault Condition		
	FaultActionRoute Fault1 MyFaultAction Suspected		
7			

Engine Systems

OBD Fault Manager Concept – Fault Data

 Fault Data – The ability to map a particular unit of data (e.g. Occurrence Counts) to a particular fault in the application.

• Fault Manager:

No built in mechanism

• OBD Fault Manager:

- "Custom Fields" track this data
 - Dynamically sized and ordered at build time by MotoHawk
 - Can reference faults via the "obdfault_T" data type in Simulink
- Protocol features are enabled (e.g. DTC, SPN, FMI, Occurrence Count, etc.)

Custom Field Examples

Required for All OBD Faults

- SPN (uint32), Constant DM1, 2, 6, 12, 23, etc
- FMI (uint8), Constant DM1, 2, 6, 12, 23, etc
- Occurrence Count (uint8), Non-volatile DM1, 2, 6, 12, 23, etc
- Fault Classification (uint8), Calibration DM41-52
- MIL Counts(uint8), Non-volatile for turning off MIL.
- Disable (boolean) for Enable/Disable OBD Fault
- ConsecutiveNonFailCycles (uint8) for clearing Pending Fault

Optional for other specific Faults

- Readiness (uint8), non-volatile DM5
- Total Active Time (uint16) non-volatile DM32
- Total Previously active Time (uint16), non-volatile DM32
- DTC Time until Derate (uint16), non-volatile DM32 (Derate fault only)
- Failure Specific B1 Count (uint16), non-volatile DM40 (EOBD VI B1 Classification only)

Custom Field Details

Engine Systems

Proprietary Information

Custom Data Field

Engine Systems

OBD Fault Manager Concept – Global Disable

 Global disable – the ability to "freeze" faults (prevent new faults from being set)

• Fault Manager:

- No built in mechanism
- OBD Fault Manager:
 - Global disable block will prevent all faults from being set
 - Protocol features are enabled (e.g. Service 0x85 in 14229-1)

Global Enable

Global Enable Definition Name: GlobalEnable

Engine Systems

OBD Fault Manager Concept – IUPM

 In Use Performance Monitor Ratio – This is an OBD concept to track whether a given diagnostic is run often enough to satisfy regulation requirements.

• Fault Manager:

No built in mechanism

• OBD Fault Manager:

- Drive cycle is required
- In Use Performance Monitor blocks manage the counts according to OBD regulations
- Protocol features are enabled (e.g. DM20 in J1939-73)

Performance Counters

- Ratio of Tests Run
- General Counters

In Use Performance General Counter Definition Name: GeneralDenominator

In Use Performance Monitor Definition Name: Catalyst

In Use Performance General Counter Increment Name: GeneralDenominator In Use Performance Monitor Increment Name: Catalyst Numerator

Future Work

- Simulation support
- OBD Automatic Documentation

Further Communication Integration

- J1939
- J1979
- 14229-1
- ISO27145
- Others?

WOODWARD

20

Proprietary Information