



Abstract—A target-based rapid prototyping system,

MotoHawk, is described for controls development, vehicle or

engine calibration, fleet testing and production. MotoHawk

features the capability of controlling varied types of engines

(gasoline and diesel engines from single-cylinder to multi-

cylinder), auto-code generation of Simulink/Stateflow models to

a family of production Electronic Control Units (ECUs), and a

calibration interface incorporated into the models. Finally, an

illustrative example of a MotoHawk application, the design and

implementation of a fuel control strategy for gasoline engines, is

discussed in detail.

I. INTRODUCTION

ODAY’S advanced Engine Management Systems

(EMS) are highly sensed, controlled and actuated, and

need sophisticated embedded software and require long

development periods. On the other hand, software cost

pressure and intense competition require continuous

reduction of EMS innovation cycle time. One such solution

is the concept of the rapid prototyping system [1-6].

 Traditionally, the transition from the algorithm and

prototype development to the production code generation is

realized by dedicated software engineers, which requires

significant software engineering overhead. In order to make

this transition fast and efficient, MotoTron has introduced

the target-based prototyping/production code development

system – MotoHawk [7-8]. By providing a common tool for

autocode generation, modeling, control system design, and

I/O functions, MotoHawk can automatically and efficiently

generate development and production code simultaneously,

which closes the gap between systems engineers and

software engineers, reduces software validation capital

investment, and improves software quality.

 The primary capabilities of MotoHawk relative to engine

system modeling, control system design and analysis, and

diagnostics include the following [6-8]:

1) Capability of controlling various types of engines,

including gasoline and diesel, from single-cylinder to

multi-cylinder;

2) A generous, flexible, I/O set library, which is directly

accessed and configurable through calibration;

3) An embedded software framework, which provides an

RTOS, angular and time-based priority scheduling, and

multiple communication protocols (CAN and RS 485),

4) A fault manager module, which standardizes sensor,

actuator and other engine subsystem on-board

diagnostics;

P. He, B. R. Suhre, C. Doyle, and M. J. Lemancik are with MotoTron

Corp., 505 Marion Rd, Oshkosh, WI 54901 USA (contact author: P. He; e-

mail: evertuga@yahoo.com).

5) An embedded calibration tool, which allows for the

display of all calibrations and measurement parameters,

simultaneous connections to multiple ECUs, and

multiple applications connected to any single ECU;

6) A system debug tool, which monitors the stack, heap,

and CPU margin violation, as well as other critical

errors in real time;

In addition, MotoHawk provides knock detection and

control, variable cam timing phase detection and control, and

is compatible with Motorola’s MPC555, MPC565 and

HCS12 microcontrollers.

 Nomenclature is listed in Section II. In Section III, we

introduce MotoHawk basics, and outline the necessary steps

to build an engine management system using the MotoHawk

environment. Section IV presents a fuel control strategy

design and its implementation with MotoHawk. In Section

V, detailed experimental steps are listed to test the proposed

fuel control strategy performance on a spark ignition engine

and Section VI presents the conclusions.

II. NOMENCLATURE

v volumetric efficiency, [unitless]

 throttle position, [%]

 equivalence ratio, [unitless]

FA air fuel ratio, [Stoichiometric = 7.14]

am mass of air inducted into each cylinder, [g]

am total engine mass air flow rate, [sg]

N engine speed, [secrad]

n number of cylinders, [unitless]

Rn number of crank revolutions for each power stroke

per cylinder, [unitless]

P intake manifold air pressure, [Pa]

baroP barometric pressure, [Pa]

R ideal gas constant, [=  KmolJ 314.8]

aT intake air temperature, [Kelvin]

qT torque, [mN ]

dV total cylinder swept volume, [
3m]

III. MOTOHAWK

MotoHawk is an ECU-based rapid prototyping system that

provides the ability to develop, test and validate engine

control applications designed in Simulink/Stateflow running

on top of the RTOS framework and production hardware [7].

The primary MotoHawk functional blocks consist of RTOS

interface, module digital sequences (injector, spark coil,

Target-based Prototyping System Applied to Fuel Control

Pingan He, Blake R. Suhre, Chris Doyle, and Michael J. Lemancik

T

mailto:evertuga@yahoo.com

variable cam phase, etc.), analog I/O (PWM, wide-band

oxygen sensor, etc.), interface to CAN and serial

communications devices, interface to the calibration and

display, fault manager definition, engine position (encoder),

and debug tools.

In the following example, a basic engine management

system (EMS) is constructed using MotoHawk. The top level

MotoHawk diagram of an EMS is shown in Figure 1. This

EMS consists of an operating system, engine constants,

vehicle and gauge, controller, and engine. Each of these

subsystems will be explained next.

A. Operating System

The operating system definition block defines the target

hardware, stack size, heap size, and system debug tool. The

target hardware could be, for example, an MPC555,

MPC565, MPC563, HCS12 or other microcontroller-based

system. Foreground, background, idle and interrupt stack

sizes need to be defined for the multi-tasking operating

system. A system debug tool monitors the stack, heap, and

CPU margin violations or other critical errors in real time. In

any case, when one of these errors is discovered, certain

actuator will be shut down safely, such as fuel injectors and

spark coils. The operating system can handle event-based

and/or time-based embedded systems and supports both

angle- and time-based priority scheduling.

Fig. 1. EMS top level diagram.

B. Engine Constants

Within the engine constants block, global data are defined

and can be used anywhere in the engine management system

model. These constants include but are not limited to

cylinder displacement, air-fuel ratio, cylinder firing order,

cylinder firing angles, number of crank revolutions for each

power stroke per cylinder, engine type (diesel or gasoline),

etc. All of these constants can be adjusted or changed during

the calibration process.

C. CAN Definition

The communications between driver command, gauges,

calibration, and ECU can be realized by CAN or serial

communications. The CAN definition, transmit blocks, and

receive blocks set up all the communication parameters such

as baud rate, transmit and receive queue size, CAN message

definition, asynchronous or synchronous transmission, etc.

This ensures accurate messages transmission among driver

inputs, gauges, sensors, ECUs, and calibrations.

D. Vehicle and Gauge

The vehicle operator initiates control commands to the

ECU, and the ECU calculates suitable control signals based

on engine operation conditions and the structure of its

control algorithms. Then the control signal is sent to

actuators to perform the required task. The gauge gathers and

displays, graphically, engine running parameters such as

RPM, engine coolant temperature, manifold pressure, etc.

E. Controller

The engine controller can be partitioned into several

subsystems: Virtual Sensors, Virtual Commands, Engine

Control, Actuator Characterization, and Diagnostics. The

engine controller system diagram is shown in Figure 2. The

structure and function of individual subsystems are outlined

below.

 1) Virtual Sensors Subsystem: it receives the sensor and

command signals, and then calculates the Virtual Sensor

signals (such as engine state and normalized effective engine

coolant temperature) based on the physical framework,

logical framework and engine operating conditions.

 The Virtual Sensor signals are used in all other engine

controller subsystems.

Virtual

Commands

Engine

Control

Diagnostics

Actuator

Characterization

Virtual

Sensors

Sensors

Virtual Sensors

Control

Signals

Virtual

Commands

Virtual Sensors Virtual Sensors

Virtual Sensors

Virtual Commands

Control Signals

Fig. 2. Engine controller system.

 2) Virtual Commands Subsystem: it is used to synthesize

the commands from driver based on engine models and

sensor signals. It is useful for the Engine Control subsystem

and Diagnostics subsystem.

 3) Engine Control Subsystem: combining Virtual

Commands and Virtual Sensors signals, and based on engine

models and control requirements, the Engine Control

subsystem calculates suitable torque request, fuel, air, spark

advance, spark energy and ignition timing accounting for

engine configuration (naturally aspirated or turbocharged

engines, engines with or without EGR) and different

situations such as warm-up, cruise control, knock control and

emission control. It may include [3, 5, and 9]:

 The Engine Torque Coordinator: its function is to

simplify and integrate multiple torque requests (for

example: driver request, idle control, cruise control and

emission control may simultaneously and independently

make torque requests) placed on the engine as well as

coordinate how that torque is produced (i.e. via air, fuel

or spark). It is only available for engines equipped with

an electronic throttle.

 The Air/Fuel Coordinator: similar to the engine torque

coordinator, all mixture demands are coordinated in one

air/fuel manager. Based on the operating conditions, a

set of basic functions controls the air/fuel ratio within

the physical limits.

 Cylinder Individual Knock Control: using knock sensors

to detect the onset of detonation, retards spark timing on

a per cylinder basis.

 Idle Speed Governor: including idle speed control, idle

transition (entry and exit) control, idle spark advance

and air control;

 Emissions Control: works to optimize emissions during

cranking, start and after start. This enables the

realization of various catalyst warm-up strategies.

 Additional customer defined functions as required.

The engine control subsystem signals are used in

Diagnostics and Actuator Characterization subsystems as

follows.

 4) Actuator Characterization: including injector

characterization, spark coils characterization, electronic

throttle characterization, etc. It receives signals from Virtual

Sensors and Engine Control subsystems and sends out

signals to the engine actuators.

 5) Diagnostics: including all the sensors, actuators and

catalyst diagnostics. The Diagnostics subsystem receives

signals from Virtual Sensors, Virtual Commands and the

Engine Control subsystems, and interfaces with calibrations,

SCAN-tools, and audio-visual devices.

F. Engine

In terms of engine control, the Engine portion of the model

consists of Sensors and Actuators. The Sensors section

receives electronic signals from the physical sensors or

engine model at the hardware pins and then converts them

into suitable engine units for computation in the Controller.

It also includes signal conditioning and filtering. The

Actuators section links the signal from Actuator

Characterization subsystem to the correct hardware pins. The

Sensors and Actuators can be in subsystems running at

different update rates.

 To be capable of controlling different engines with the

same engine model, a universal encoder block, injector

sequence block and spark sequence block are included in

MotoHawk. The injector sequence sets up a sequence of

injection pulses, starting with the specified pin and working

up. It can accommodate up to 12 either high-impedance or

low-impedance injectors. Similar to the injector sequence,

the spark sequence sets up a sequence of spark pulses

dynamically, starting with the specified pin and working up.

The MotoHawk encoder block supports different Crank/Cam

sensor combinations and the mechanical vs. electrical offset

can also be adjusted at runtime. This means the same,

already-developed, engine model and control algorithm can

be code-generated once and the binary executable file can be

used for different engines with different encoder types,

number of cylinders, firing order, sensor inputs, and driver

outputs. By doing this, the software development time is

greatly reduced.

 After introducing the basics of MotoHawk and the

construction of an engine management system in this section,

a fuel control strategy is proposed in the following section.

IV. FUEL CONTROL DESIGN

To meet stringent engine emissions requirements and

increase fuel economy, a model-based adaptive and

feedforward fuel control strategy is proposed for gasoline

engines. The controller structure is shown in Figure 3.

MAF

Sensor

Delay

Target


PID

Fuel

Calculation

Fuel

Injectors

Fuel

Control

Enable

Gain

Scheduling

FF

Controller

I Term

Adaptation

Gasoline

Engine

O2 Sensor

Diagnostics

TPS

Sensor

O2 Sensors

ETC

Controller

Other

Actuators







MAF

MAF

MAF

Error

Driver TPS Request

TPS

Error





 CTRL Output

Knock

Fuel

Controller

Measured

Perturbation

Function











Fig. 3. Fuel controller structure.

The model-based design centers around a physical plant

model. Being a feedforward-based design, the model is used

to predict engine state based on current sensor inputs. This

provides more responsive control. The adaptive portion of

the design uses feedback signals from engine sensors and

actuators to adapt the engine model thus minimizing the

amount of control done in the feedback portion of the loop.

These three parts are necessary for a stable and robust engine

controller and are widely used in every major MotoHawk

project.

The fuel control algorithm outlined below is integrated

into the engine management system to apply the appropriate

amount of fuel and determines the resulting air/fuel ratio.

The fuel controller is comprised of five subsystems as shown

in Figure 3:

1) Fuel Control Enable Subsystem: logic to decide whether

the strategy is enabled or disabled..

2) Feedforward (FF) Control Subsystem: to deal with

difficult engine transients;

3) Gain-Scheduled PID Control Subsystem: is provided to

reduce instantaneous A/F errors;

4) Long-Term PID Integration-Term (I-term) Adaptation

Subsystem: to adapt to changing engine parameters

(such as combustion chamber and inlet tract deposits

and oxygen sensor aging);

5) Oxygen Sensor Diagnostics Subsystem: for the

indication of oxygen sensor operational status.

The control objective is to track the delayed perturbed

target equivalence ratio to realize optimal emissions system

performance. The stoichiometric equivalence ratio is first

perturbed with specific amplitude and switching frequency.

Then the perturbed equivalence ratio passes through a delay

block. The error input to the PID is obtained by comparing

the delayed, perturbed equivalence ratio with the measured

equivalence ratio from oxygen sensors. The final output of

the fuel controller is the sum of PID output, the feedforward

control output and I-term adaptation. Then the output of the

fuel controller goes to the fuel calculation block to compute

the correct amount of fuel to inject. The air ingested by the

engine is controlled by a separate electronic throttle

controller.

Next, the control strategy development is explained in

detail.

A. Fuel Controller Enable Logic

Fuel closed-loop control is enabled when all the following

conditions are satisfied:

1) Fuel control enable flag is set via calibration;

2) Engine indicated work is above a calibrated value

indicating oxygen sensor warm-up;

3) Desired equivalence ratio is within a calibrated range of

stoichiometric;

4) There is no oxygen sensor or catalyst fault;

5) There is no other engine sensor or actuator faults;

B. Target Equivalence Ratio

It has been shown that commercially available Three-Way-

Catalysts (TWC) show a significant improvement in

conversion rates when the equivalence ratio oscillates around

the nominal value of 1.0 [10-11]. The ideal equivalence ratio

for the fuel controller is the nominal value of 1.0 oscillated

with a calibratable switching period of T and amplitude 

depending on the engine operating conditions, as shown in

Figure 4.

Target Equivalence Ratio

Stoichiometric 1





Fig. 4. Target equivalence ratio

Another key factor in successfully implementing the fuel

control strategy is to include a pure measurement delay,

which is composed of fuel transport delay plus the oxygen

sensors’ reaction time. The fuel transport delay consists of

the time from when the fuel command is issued to the

injector to the time the exhaust valve opens, and the time for

the gas to move from the exhaust port to the oxygen sensor

[12]. The pure measurement delay introduces a limitation on

the system bandwidth and limits the transient accuracy of the

system response. For this implementation, we not only

introduce a feedforward term to make the controller act

quickly, but delay the target equivalence ratio to match with

the pure measurement delay. This is realized by passing

target equivalence ratio through a measurement delay block

before comparing it with the equivalence ratio signal from

the oxygen sensors, as shown in Figure 3. The measurement

delay block consists of a look-up table based on the mass of

air flow sensor input. The idea is to use the mass air flow

input instead of speed and load to reduce the calibration

effort. The mass air flow rate can be obtained from a digital

MAF sensor or via the speed-density calculation [13-14].

A lower MAF value usually means a lower speed and load,

and larger measurement delay. So the transport delay block

is able to take in account different engine operation

conditions.

C. Feedforward Controller

The feedforward controller’s reacts instantaneously to

engine transients and the measurement delay. Based on the

knowledge of engine behavior, combined with current engine

operating conditions (speed and load), the feedforward

controller ‘predicts’ a response that will allow the engine

operate optimally during transient operation and reduce the

reliance on the feedback, PID controller loop.

D. Gain Scheduled PID

To eliminate any instantaneous equivalence ratio error, a

feedback PID controller is introduced. To adapt to different

operating conditions (speed and load), a gain scheduled

strategy is proposed as shown in Figure 3. Based on different

values of mass air flow rate, the PID controller parameters

are adjusted accordingly for better performance. The PID

parameters are grouped in a calibrated table and stored in

EEPROM.

E. Long Term PID I-term Adaptation

To reduce the PID controller loading and adapt to changes

in engine characteristics, such as oxygen sensor aging, a

long-term PID Integration-term (I-term) adaptation is

included in the fuel controller structure. The principle used

in this I-term adaptation is: with a well-calibrated, gain-

scheduled, PID controller, plus a feedforward controller, the

integration term of the PID controller should be small. If the

engine characteristics change over time, the I-term will

absorb any error caused by these changes. This

“accumulated” error in the integration term will then be used

to adapt part of the feedforward model, in this case the

injector model. By doing so, the I-term in the PID controller

will be continuously driven toward zero.

F. Oxygen Sensor Diagnostics

Oxygen sensor diagnostics consist of: enable logic, sensor

voltage monitor, sensor response monitor, and diagnostics

interface.

1) Oxygen sensor enable logic: the oxygen sensor voltage

and response monitors are primarily enabled during fuel

closed-loop control. The enable logic is duplicated for

each monitor to provide different speed/load and enable

conditions via calibration. The rationale for the different

enable conditions is that the oxygen sensor must be

cycling in a well controlled manner to perform some of

the response tests, whereas this is not the case for the

voltage tests.

2) Oxygen sensor voltage monitor: it detects a low or high

voltage output from oxygen sensor during fuel closed-

loop control;

3) Oxygen sensor response monitor: it detects either a slow

sensor output transition or a slow-to-respond sensor;

4) Diagnostics interface: the fault manager contained in

MotoHawk defines and manages the oxygen sensor fault

and supports the OBD scan tool protocol.

V. EXPERIMENT

This section is to validate the proposed fuel control

performance. The control objective is to have the measured

equivalence ratio track the target equivalence ratio. In the

section IV, the target equivalence ratio is a square wave as

shown in Figure 4. Since there is no way to exactly track a

step response, the target equivalence ratio of the square wave

is passed through a low-pass filter, which results in a more

realistic target equivalence ratio. The switching period T and

amplitude  were set at 4 seconds and 0.04, respectively.

Two different scenarios are considered: 1) different

operation regimes: the engine is operated at different speeds

and loads to test the controller performance; 2) with or

without delay compensation: the engine is operated at

1000RPM with measurement delay compensation or

without delay compensation (both cases without load). In

each scenario, target equivalence ratio and measured

equivalence ratio are plotted together to show the tracking

ability of the proposed fuel controller.

The engine is a GM V-8 of 5.0 liter displacement with an

electronic throttle and a dynamometer to control engine load.

Two NGK Universal Exhaust Gas Oxygen (UEGO) sensors

are used to measure the equivalence ratio in the exhaust

stream. The hardware platform is the MotoTron MPC565-

based 128-pin module [7]. ECU565-128 is operated at

56MHz and has dual CAN 2.0B data-links, one of which is

reserved for communication to the calibration tool. In

addition there is one RS485 serial bus and one ISO 9141

channel. This ECU can accommodate up to 34 analog inputs,

8 low frequency digital inputs, two wide-range oxygen

sensor inputs, and two wide-band knock sensors. It also has

12 injector drivers, three H-Bridge drivers, up to 10 low-side

PWMs, and one main power relay driver.

In following each plot, the horizontal axis is time and

represents a 20 second period, the vertical axis is

equivalence ratio and ranges from 0.95 to 1.05. The solid

and curved lines are the target and measured equivalence

ratio, respectively.

A. Different Engine Operating Regimes

In this scenario the controller performance is tested at

different engine operating points (speeds and loads). The

measured equivalence ration and target equivalence ratio are

recorded for comparison. Figure 5 shows the controller

performance at 1110RPM and a brake torque of

5.44 mN  . At this operating point, 39.20am sg ,

manifold pressure is 8.50 KPa, throttle position () is

%76.8 . The measurement delay compensation is

24.0 seconds.

Time (S)
0 5 10 15

E
q

u
iv

a
le

n
c

e
 R

a
ti

o

Fig. 5. Controller performance at low speed and load.

Time (S)
0 5 10 15

E
q

u
iv

a
le

n
c

e
 R

a
ti

o

Fig. 6. Controller performance at high speed and load.

Figure 6 shows the controller performance at

1220RPM , a brake torque of 2.162 mN  ,

3.32am sg , a manifold pressure of 6.68MAP KPa,

and throttle position of %5.13 . The measurement delay

compensation is 0.14 seconds.

Comparing the measurement delay at two cases, an

important conclusion can be made: as expected, the

measurement delay at a high speed and load point is less than

that at a low speed and load point.

Obviously, both plots show the fuel controller to have

good performance under different engine operating

conditions.

B. With or Without Delay Compensation

The delay compensation block is enabled or disabled in

order to compare the controller performance with or without

delay compensation. Figure 7 shows the controller

performance at 1000RPM , 1.11am sg , manifold

pressure of 6.36MAP KPa, throttle position of

%1.5 . The measurement delay compensation is 0.34

second. From Figure 7, the measured equivalence ratio

tracks the target very well. Figure 8 shows the controller

performance under the same engine operating conditions and

controller configuration except that the delay compensation

subsystem is disabled. Figure 8 confirms that there is a pure

delay between the measured signal and target signal.

Time (S)
0 5 10 15

E
q

u
iv

a
le

n
c

e
 R

a
ti

o

Fig. 7. Controller performance with delay compensation.

Time (S)
0 5 10 15

E
q

u
iv

a
le

n
c

e
 R

a
ti

o

Fig. 8. Controller performance without delay compensation.

VI. CONCLUSION

This paper presents an ECU-based rapid prototyping

system, MotoHawk, in this case used for engine management

control system design, calibration, and development. It has

the benefits of simpler and faster software development

through the use of production ECU hardware in

development, a transparent environment for software/system

integration which reduces validation time and cost, and

extensibility to a flexible family of products. Engine fuel

control was discussed as an illustrative example of a

MotoHawk application.

ACKNOWLEDGEMENT

 The authors would like to thank Eric Bradley at MotoTron

Corp. for the development of the MotoHawk concept, Aaron

J. Ward at MotoTron Corp. for implementing and testing

parts of the fuel control strategy and Mark Frank and Patrick

McCarthy at FEV Engine Technology Inc. for many helpful

discussions and suggestions regarding the development of

the fuel control strategy.

REFERENCES

[1] C. Cao, D. Shull, and E. Himes, “A model-based environment for

production engine management system (EMS) development,” SAE

paper No. 2001-01-0554, 2001.

[2] S. Furry, and J. Kainz, “Rapid algorithm development tools applied to

engine management systems,” SAE paper No. 980799, 1998.

[3] J. Gerhardt, H. Honninger and H. Bischof, “A new approach to

functional and software structure for engine management systems –

Bosch ME7,” SAE Paper No. 980801, 1998.

[4] R. Lawrie and M. McKenna, “An architecture based design process

for deploying control software on production hardware using

MotoHawk,” SAE Paper No. 2003-02-0853, 2003.

[5] B. Mencher, H. Jessen, L. Kaiser, and J. Gerhardt, “Preparing for

CARTRONIC – interface and new strategies for torque coordination

and conversion in a spark ignition engine-management system,” SAE

Paper No. 2001-01-0268, 2001.

[6] J. D. Naber, E. K. Bradley, and J. E. Szpytman, “Target based rapid

prototyping control system for engine research,” SAE paper No. 2006-

01-0267, 2006.

[7] MotoTron Corp., web site, www.mototron.com.

[8] MotoHawk web site, www.motohawk.info.

[9] Bosch Gasoline Engine Management Handbook, Robert Bosch

GmbH, 2004.

[10] L. Padeste, Three-Way Catalysts in a Hybrid Drive-System:

Experimental Study and Kinetic Modeling, ETH-Dissertation No.

10515, Swiss Federal Institute of Technology (ETH), 1994.

[11] L. Guzzela, “Models and model-based control of IC-engines - a

nonlinear approach,” SAE Paper No. 950844, 1995.

[12] J. L. Kainz and J. C. Smith, “Individual cylinder fuel control with a

switching oxygen sensor,” SAE Paper No. 1999-01-0546, 1999.

[13] B. R. Suhre, MotoTron Engine Control and Calibration Basics,

MotoTron technical report, 2005.

[14] J. B. Heywood, Internal Combustion Engine Fundamentals,

McGraw-Hill Book Company, 1988.

http://www.mototron.com/

