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Abstract—A target-based rapid prototyping system, 

MotoHawk, is described for controls development, vehicle or 

engine calibration, fleet testing and production. MotoHawk 

features the capability of controlling varied types of engines 

(gasoline and diesel engines from single-cylinder to multi-

cylinder), auto-code generation of Simulink/Stateflow models to 

a family of production Electronic Control Units (ECUs), and a 

calibration interface incorporated into the models. Finally, an 

illustrative example of a MotoHawk application, the design and 

implementation of a fuel control strategy for gasoline engines, is 

discussed in detail.     

I. INTRODUCTION 

ODAY’S advanced Engine Management Systems 

(EMS) are highly sensed, controlled and actuated, and 

need sophisticated embedded software and require long 

development periods. On the other hand, software cost 

pressure and intense competition require continuous 

reduction of EMS innovation cycle time. One such solution 

is the concept of the rapid prototyping system [1-6].  

 Traditionally,  the transition from the algorithm and 

prototype development to the production code generation is 

realized by dedicated software engineers, which requires 

significant software engineering overhead. In order to make 

this transition fast and efficient, MotoTron has introduced 

the target-based prototyping/production code development 

system – MotoHawk [7-8]. By providing a common tool for 

autocode generation, modeling, control system design, and 

I/O functions, MotoHawk can automatically and efficiently 

generate development and production code simultaneously, 

which closes the gap between systems engineers and 

software engineers, reduces software validation capital 

investment, and improves software quality.  

 The primary capabilities of MotoHawk relative to engine 

system modeling, control system design and analysis, and 

diagnostics include the following [6-8]: 

1) Capability of controlling various types of engines, 

including gasoline and diesel, from single-cylinder to 

multi-cylinder; 

2) A generous, flexible, I/O set library, which is directly 

accessed and configurable through calibration; 

3) An embedded software framework, which provides an 

RTOS, angular and time-based priority scheduling, and 

multiple communication protocols (CAN and RS 485), 

4) A fault manager module, which standardizes sensor, 

actuator and other engine subsystem on-board 

diagnostics; 
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5) An embedded calibration tool, which allows for the 

display of all calibrations and measurement parameters, 

simultaneous connections to multiple ECUs, and 

multiple applications connected to any single ECU; 

6) A system debug tool, which monitors the stack, heap, 

and CPU margin violation, as well as other critical 

errors in real time; 

In addition, MotoHawk provides knock detection and 

control, variable cam timing phase detection and control, and 

is compatible with Motorola’s MPC555, MPC565 and 

HCS12 microcontrollers.  

 Nomenclature is listed in Section II. In Section III, we 

introduce MotoHawk basics, and outline the necessary steps 

to build an engine management system using the MotoHawk 

environment. Section IV presents a fuel control strategy 

design and its implementation with MotoHawk. In Section 

V, detailed experimental steps are listed to test the proposed 

fuel control strategy performance on a spark ignition engine 

and Section VI presents the conclusions.  

II. NOMENCLATURE 

v   volumetric efficiency, [unitless] 

    throttle position, [%] 

    equivalence ratio, [unitless] 

FA  air fuel ratio, [ Stoichiometric = 7.14 ] 

am   mass of air inducted into each cylinder, [ g ] 

am   total engine mass air flow rate, [ sg ] 

N   engine speed, [ secrad ] 

n    number of cylinders, [unitless] 

Rn   number of crank revolutions for each power stroke 

per cylinder, [unitless] 

P   intake manifold air pressure, [ Pa ] 

baroP  barometric pressure, [ Pa ] 

R   ideal gas constant, [ =  KmolJ 314.8 ] 

aT   intake air temperature, [ Kelvin ] 

qT   torque, [ mN  ] 

dV   total cylinder swept volume, [
3m ] 

III. MOTOHAWK 

MotoHawk is an ECU-based rapid prototyping system that 

provides the ability to develop, test and validate engine 

control applications designed in Simulink/Stateflow running 

on top of the RTOS framework and production hardware [7]. 

The primary MotoHawk functional blocks consist of RTOS 

interface, module digital sequences (injector, spark coil, 
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variable cam phase, etc.), analog I/O (PWM, wide-band 

oxygen sensor, etc.), interface to CAN and serial 

communications devices, interface to the calibration and 

display, fault manager definition, engine position (encoder), 

and debug tools.  

In the following example, a basic engine management 

system (EMS) is constructed using MotoHawk. The top level 

MotoHawk diagram of an EMS is shown in Figure 1. This 

EMS consists of an operating system, engine constants, 

vehicle and gauge, controller, and engine. Each of these 

subsystems will be explained next. 

A. Operating System 

The operating system definition block defines the target 

hardware, stack size, heap size, and system debug tool. The 

target hardware could be, for example, an MPC555, 

MPC565, MPC563, HCS12 or other microcontroller-based 

system. Foreground, background, idle and interrupt stack 

sizes need to be defined for the multi-tasking operating 

system. A system debug tool monitors the stack, heap, and 

CPU margin violations or other critical errors in real time. In 

any case, when one of these errors is discovered, certain 

actuator will be shut down safely, such as fuel injectors and 

spark coils. The operating system can handle event-based 

and/or time-based embedded systems and supports both 

angle- and time-based priority scheduling.  

 

 
 

Fig. 1. EMS top level diagram. 

B. Engine Constants 

Within the engine constants block, global data are defined 

and can be used anywhere in the engine management system 

model. These constants include but are not limited to 

cylinder displacement, air-fuel ratio, cylinder firing order, 

cylinder firing angles, number of crank revolutions for each 

power stroke per cylinder, engine type (diesel or gasoline), 

etc. All of these constants can be adjusted or changed during 

the calibration process. 

C. CAN Definition 

The communications between driver command, gauges, 

calibration, and ECU can be realized by CAN or serial 

communications. The CAN definition, transmit blocks, and 

receive blocks set up all the communication parameters such 

as baud rate, transmit and receive queue size, CAN message 

definition, asynchronous or synchronous transmission, etc. 

This ensures accurate messages transmission among driver 

inputs, gauges, sensors, ECUs, and calibrations.  

D. Vehicle and Gauge 

The vehicle operator initiates control commands to the 

ECU, and the ECU calculates suitable control signals based 

on engine operation conditions and the structure of its 

control algorithms. Then the control signal is sent to 

actuators to perform the required task. The gauge gathers and 

displays, graphically, engine running parameters such as 

RPM, engine coolant temperature, manifold pressure, etc. 

E. Controller 

The engine controller can be partitioned into several 

subsystems: Virtual Sensors, Virtual Commands, Engine 

Control, Actuator Characterization, and Diagnostics. The 

engine controller system diagram is shown in Figure 2. The 

structure and function of individual subsystems are outlined 

below. 

 1) Virtual Sensors Subsystem: it receives the sensor and 

command signals, and then calculates the Virtual Sensor 

signals (such as engine state and normalized effective engine 

coolant temperature) based on the physical framework, 

logical framework and engine operating conditions.  

 The Virtual Sensor signals are used in all other engine 

controller subsystems. 

Virtual 

Commands

Engine 

Control

Diagnostics

Actuator

Characterization

Virtual 

Sensors

Sensors

Virtual Sensors

Control

Signals

Virtual 

Commands

Virtual Sensors Virtual Sensors

Virtual Sensors

Virtual Commands

Control Signals

 
 

Fig. 2. Engine controller system. 

 

 2) Virtual Commands Subsystem: it is used to synthesize 

the commands from driver based on engine models and 

sensor signals. It is useful for the Engine Control subsystem 

and Diagnostics subsystem. 

 3) Engine Control Subsystem: combining Virtual 

Commands and Virtual Sensors signals, and based on engine 

models and control requirements, the Engine Control 

subsystem calculates suitable torque request, fuel, air, spark 

advance, spark energy and ignition timing accounting for 

engine configuration (naturally aspirated or turbocharged 

engines, engines with or without EGR) and different 

situations such as warm-up, cruise control, knock control and 

emission control. It may include [3, 5, and 9]: 

 The Engine Torque Coordinator: its function is to 

simplify and integrate multiple torque requests (for 

example: driver request, idle control, cruise control and 

emission control may simultaneously and independently 



 

 

 

make torque requests) placed on the engine as well as 

coordinate how that torque is produced (i.e. via air, fuel 

or spark). It is only available for engines equipped with 

an electronic throttle. 

 The Air/Fuel Coordinator: similar to the engine torque 

coordinator, all mixture demands are coordinated in one 

air/fuel manager. Based on the operating conditions, a 

set of basic functions controls the air/fuel ratio within 

the physical limits. 

 Cylinder Individual Knock Control: using knock sensors 

to detect the onset of detonation, retards spark timing on 

a per cylinder basis. 

 Idle Speed Governor: including idle speed control, idle 

transition (entry and exit) control, idle spark advance 

and air control; 

 Emissions Control: works to optimize emissions during 

cranking, start and after start. This enables the 

realization of various catalyst warm-up strategies. 

 Additional customer defined functions as required. 

The engine control subsystem signals are used in 

Diagnostics and Actuator Characterization subsystems as 

follows. 

 4) Actuator Characterization: including injector 

characterization, spark coils characterization, electronic 

throttle characterization, etc. It receives signals from Virtual 

Sensors and Engine Control subsystems and sends out 

signals to the engine actuators. 

 5) Diagnostics: including all the sensors, actuators and 

catalyst diagnostics. The Diagnostics subsystem receives 

signals from Virtual Sensors, Virtual Commands and the 

Engine Control subsystems, and interfaces with calibrations, 

SCAN-tools, and audio-visual devices. 

F. Engine 

In terms of engine control, the Engine portion of the model 

consists of Sensors and Actuators. The Sensors section 

receives electronic signals from the physical sensors or 

engine model at the hardware pins and then converts them 

into suitable engine units for computation in the Controller. 

It also includes signal conditioning and filtering. The 

Actuators section links the signal from Actuator 

Characterization subsystem to the correct hardware pins. The 

Sensors and Actuators can be in subsystems running at 

different update rates.  

 To be capable of controlling different engines with the 

same engine model, a universal encoder block, injector 

sequence block and spark sequence block are included in 

MotoHawk. The injector sequence sets up a sequence of 

injection pulses, starting with the specified pin and working 

up. It can accommodate up to 12 either high-impedance or 

low-impedance injectors. Similar to the injector sequence, 

the spark sequence sets up a sequence of spark pulses 

dynamically, starting with the specified pin and working up. 

The MotoHawk encoder block supports different Crank/Cam 

sensor combinations and the mechanical vs. electrical offset 

can also be adjusted at runtime. This means the same, 

already-developed, engine model and control algorithm can 

be code-generated once and the binary executable file can be 

used for different engines with different encoder types, 

number of cylinders, firing order, sensor inputs, and driver 

outputs. By doing this, the software development time is 

greatly reduced.  

 After introducing the basics of MotoHawk and the  

construction of an engine management system in this section, 

a fuel control strategy is proposed in the following section.  

IV. FUEL CONTROL DESIGN 

To meet stringent engine emissions requirements and 

increase fuel economy, a model-based adaptive and 

feedforward fuel control strategy is proposed for gasoline 

engines. The controller structure is shown in Figure 3. 
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Fig. 3. Fuel controller structure. 



 

 

 

The model-based design centers around a physical plant 

model. Being a feedforward-based design, the model is used 

to predict engine state based on current sensor inputs. This 

provides more responsive control. The adaptive portion of 

the design uses feedback signals from engine sensors and 

actuators to adapt the engine model thus minimizing the 

amount of control done in the feedback portion of the loop. 

These three parts are necessary for a stable and robust engine 

controller and are widely used in every major MotoHawk 

project.  

The fuel control algorithm outlined below is integrated 

into the engine management system to apply the appropriate 

amount of fuel and determines the resulting air/fuel ratio. 

The fuel controller is comprised of five subsystems as shown 

in Figure 3: 

1) Fuel Control Enable Subsystem: logic to decide whether 

the strategy is enabled or disabled..  

2) Feedforward (FF) Control Subsystem: to deal with 

difficult engine transients;  

3) Gain-Scheduled PID Control Subsystem: is provided to 

reduce instantaneous A/F errors; 

4) Long-Term PID Integration-Term (I-term) Adaptation 

Subsystem: to adapt to changing engine parameters 

(such as combustion chamber and inlet tract deposits 

and oxygen sensor aging); 

5) Oxygen Sensor Diagnostics Subsystem: for the 

indication of oxygen sensor operational status. 

The control objective is to track the delayed perturbed 

target equivalence ratio to realize optimal emissions system 

performance. The stoichiometric equivalence ratio is first 

perturbed with specific amplitude and switching frequency. 

Then the perturbed equivalence ratio passes through a delay 

block. The error input to the PID is obtained by comparing 

the delayed, perturbed equivalence ratio with the measured 

equivalence ratio from oxygen sensors. The final output of 

the fuel controller is the sum of PID output, the feedforward 

control output and I-term adaptation. Then the output of the 

fuel controller goes to the fuel calculation block to compute 

the correct amount of fuel to inject. The air ingested by the 

engine is controlled by a separate electronic throttle 

controller.  

Next, the control strategy development is explained in 

detail. 

A. Fuel Controller Enable Logic 

Fuel closed-loop control is enabled when all the following 

conditions are satisfied: 

1) Fuel control enable flag is set via calibration; 

2) Engine indicated work is above a calibrated value 

indicating oxygen sensor warm-up; 

3) Desired equivalence ratio is within a calibrated range of 

stoichiometric; 

4) There is no oxygen sensor or catalyst fault; 

5) There is no other engine sensor or actuator faults; 

B. Target Equivalence Ratio 

It has been shown that commercially available Three-Way-

Catalysts (TWC) show a significant improvement in 

conversion rates when the equivalence ratio oscillates around 

the nominal value of 1.0 [10-11]. The ideal equivalence ratio 

for the fuel controller is the nominal value of 1.0 oscillated 

with a calibratable switching period of T and amplitude   

depending on the engine operating conditions, as shown in 

Figure 4. 
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Fig. 4. Target equivalence ratio 

 

Another key factor in successfully implementing the fuel 

control strategy is to include a pure measurement delay, 

which is composed of fuel transport delay plus the oxygen 

sensors’ reaction time. The fuel transport delay consists of 

the time from when the fuel command is issued to the 

injector to the time the exhaust valve opens, and the time for 

the gas to move from the exhaust port to the oxygen sensor 

[12]. The pure measurement delay introduces a limitation on 

the system bandwidth and limits the transient accuracy of the 

system response. For this implementation, we not only 

introduce a feedforward term to make the controller act 

quickly, but delay the target equivalence ratio to match with 

the pure measurement delay. This is realized by passing 

target equivalence ratio through a measurement delay block 

before comparing it with the equivalence ratio signal from 

the oxygen sensors, as shown in Figure 3. The measurement 

delay block consists of a look-up table based on the mass of 

air flow sensor input. The idea is to use the mass air flow 

input instead of speed and load to reduce the calibration 

effort. The mass air flow rate can be obtained from a digital 

MAF sensor or via the speed-density calculation [13-14]. 

A lower MAF value usually means a lower speed and load, 

and larger measurement delay. So the transport delay block 

is able to take in account different engine operation 

conditions. 

C. Feedforward Controller 

The feedforward controller’s reacts instantaneously to 

engine transients and the measurement delay. Based on the 

knowledge of engine behavior, combined with current engine 

operating conditions (speed and load), the feedforward 

controller ‘predicts’ a response that will allow the engine 

operate optimally during transient operation and reduce the 

reliance on the feedback, PID controller loop.  

D. Gain Scheduled PID 

To eliminate any instantaneous equivalence ratio error, a 

feedback PID controller is introduced. To adapt to different 

operating conditions (speed and load), a gain scheduled 

strategy is proposed as shown in Figure 3. Based on different 

values of mass air flow rate, the PID controller parameters 

are adjusted accordingly for better performance. The PID 

parameters are grouped in a calibrated table and stored in 

EEPROM.  



 

 

 

 

E. Long Term PID I-term Adaptation 

To reduce the PID controller loading and adapt to changes 

in engine characteristics, such as oxygen sensor aging, a 

long-term PID Integration-term (I-term) adaptation is 

included in the fuel controller structure. The principle used 

in this I-term adaptation is: with a well-calibrated, gain-

scheduled, PID controller, plus a feedforward controller, the 

integration term of the PID controller should be small. If the 

engine characteristics change over time, the I-term will 

absorb any error caused by these changes. This 

“accumulated” error in the integration term will then be used 

to adapt part of the feedforward model, in this case the 

injector model. By doing so, the I-term in the PID controller 

will be continuously driven toward zero. 

F. Oxygen Sensor Diagnostics 

Oxygen sensor diagnostics consist of: enable logic, sensor 

voltage monitor, sensor response monitor, and diagnostics 

interface.  

1) Oxygen sensor enable logic: the oxygen sensor voltage 

and response monitors are primarily enabled during fuel 

closed-loop control. The enable logic is duplicated for 

each monitor to provide different speed/load and enable 

conditions via calibration. The rationale for the different 

enable conditions is that the oxygen sensor must be 

cycling in a well controlled manner to perform some of 

the response tests, whereas this is not the case for the 

voltage tests. 

2) Oxygen sensor voltage monitor: it detects a low or high 

voltage output from oxygen sensor during fuel closed-

loop control; 

3) Oxygen sensor response monitor: it detects either a slow 

sensor output transition or a slow-to-respond sensor; 

4) Diagnostics interface: the fault manager contained in 

MotoHawk defines and manages the oxygen sensor fault 

and supports the OBD scan tool protocol. 

V. EXPERIMENT 

This section is to validate the proposed fuel control 

performance. The control objective is to have the measured 

equivalence ratio track the target equivalence ratio. In the 

section IV, the target equivalence ratio is a square wave as 

shown in Figure 4. Since there is no way to exactly track a 

step response, the target equivalence ratio of the square wave 

is passed through a low-pass filter, which results in a more 

realistic target equivalence ratio. The switching period T and 

amplitude   were set at 4 seconds and 0.04, respectively.  

Two different scenarios are considered: 1) different 

operation regimes: the engine is operated at different speeds 

and loads to test the controller performance; 2) with or 

without delay compensation: the engine is operated at 

1000RPM  with measurement delay compensation or 

without delay compensation (both cases without load). In 

each scenario, target equivalence ratio and measured 

equivalence ratio are plotted together to show the tracking 

ability of the proposed fuel controller.  

The engine is a GM V-8 of 5.0 liter displacement with an 

electronic throttle and a dynamometer to control engine load. 

Two NGK Universal Exhaust Gas Oxygen (UEGO) sensors 

are used to measure the equivalence ratio in the exhaust 

stream. The hardware platform is the MotoTron MPC565-

based 128-pin module [7]. ECU565-128 is operated at 

56MHz and has dual CAN 2.0B data-links, one of which is 

reserved for communication to the calibration tool. In 

addition there is one RS485 serial bus and one ISO 9141 

channel. This ECU can accommodate up to 34 analog inputs, 

8 low frequency digital inputs, two wide-range oxygen 

sensor inputs, and two wide-band knock sensors. It also has 

12 injector drivers, three H-Bridge drivers, up to 10 low-side 

PWMs, and one main power relay driver.   

In following each plot, the horizontal axis is time and 

represents a 20 second period, the vertical axis is 

equivalence ratio and ranges from 0.95 to 1.05. The solid 

and curved lines are the target and measured equivalence 

ratio, respectively. 

A. Different Engine Operating Regimes 

In this scenario the controller performance is tested at 

different engine operating points (speeds and loads). The 

measured equivalence ration and target equivalence ratio are 

recorded for comparison. Figure 5 shows the controller 

performance at 1110RPM  and a brake torque of 

5.44 mN  . At this operating point, 39.20am sg , 

manifold pressure is 8.50  KPa, throttle position ( ) is 

%76.8 . The measurement delay compensation is 

24.0 seconds.  
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Fig. 5. Controller performance at low speed and load. 
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Fig. 6. Controller performance at high speed and load. 



 

 

 

 

Figure 6 shows the controller performance at 

1220RPM , a brake torque of 2.162  mN  , 

3.32am sg , a manifold pressure of 6.68MAP  KPa, 

and throttle position of %5.13 . The measurement delay 

compensation is 0.14 seconds.  

Comparing the measurement delay at two cases, an 

important conclusion can be made: as expected, the 

measurement delay at a high speed and load point is less than 

that at a low speed and load point.   

Obviously, both plots show the fuel controller to have 

good performance under different engine operating 

conditions. 

B. With or Without Delay Compensation 

The delay compensation block is enabled or disabled in 

order to compare the controller performance with or without 

delay compensation. Figure 7 shows the controller 

performance at 1000RPM , 1.11am sg , manifold 

pressure of 6.36MAP  KPa, throttle position of 

%1.5 . The measurement delay compensation is 0.34 

second. From Figure 7, the measured equivalence ratio 

tracks the target very well. Figure 8 shows the controller 

performance under the same engine operating conditions and 

controller configuration except that the delay compensation 

subsystem is disabled. Figure 8 confirms that there is a pure 

delay between the measured signal and target signal. 
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Fig. 7. Controller performance with delay compensation. 
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Fig. 8. Controller performance without delay compensation. 

VI. CONCLUSION 

This paper presents an ECU-based rapid prototyping 

system, MotoHawk, in this case used for engine management 

control system design, calibration, and development. It has 

the benefits of simpler and faster software development 

through the use of production ECU hardware in 

development, a transparent environment for software/system 

integration which reduces validation time and cost, and 

extensibility to a flexible family of products. Engine fuel 

control was discussed as an illustrative example of  a 

MotoHawk application.     
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